Unknown

Dataset Information

0

Reference Hallucination Score for Medical Artificial Intelligence Chatbots: Development and Usability Study.


ABSTRACT:

Background

Artificial intelligence (AI) chatbots have recently gained use in medical practice by health care practitioners. Interestingly, the output of these AI chatbots was found to have varying degrees of hallucination in content and references. Such hallucinations generate doubts about their output and their implementation.

Objective

The aim of our study was to propose a reference hallucination score (RHS) to evaluate the authenticity of AI chatbots' citations.

Methods

Six AI chatbots were challenged with the same 10 medical prompts, requesting 10 references per prompt. The RHS is composed of 6 bibliographic items and the reference's relevance to prompts' keywords. RHS was calculated for each reference, prompt, and type of prompt (basic vs complex). The average RHS was calculated for each AI chatbot and compared across the different types of prompts and AI chatbots.

Results

Bard failed to generate any references. ChatGPT 3.5 and Bing generated the highest RHS (score=11), while Elicit and SciSpace generated the lowest RHS (score=1), and Perplexity generated a middle RHS (score=7). The highest degree of hallucination was observed for reference relevancy to the prompt keywords (308/500, 61.6%), while the lowest was for reference titles (169/500, 33.8%). ChatGPT and Bing had comparable RHS (β coefficient=-0.069; P=.32), while Perplexity had significantly lower RHS than ChatGPT (β coefficient=-0.345; P<.001). AI chatbots generally had significantly higher RHS when prompted with scenarios or complex format prompts (β coefficient=0.486; P<.001).

Conclusions

The variation in RHS underscores the necessity for a robust reference evaluation tool to improve the authenticity of AI chatbots. Further, the variations highlight the importance of verifying their output and citations. Elicit and SciSpace had negligible hallucination, while ChatGPT and Bing had critical hallucination levels. The proposed AI chatbots' RHS could contribute to ongoing efforts to enhance AI's general reliability in medical research.

SUBMITTER: Aljamaan F 

PROVIDER: S-EPMC11325115 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reference Hallucination Score for Medical Artificial Intelligence Chatbots: Development and Usability Study.

Aljamaan Fadi F   Temsah Mohamad-Hani MH   Altamimi Ibraheem I   Al-Eyadhy Ayman A   Jamal Amr A   Alhasan Khalid K   Mesallam Tamer A TA   Farahat Mohamed M   Malki Khalid H KH  

JMIR medical informatics 20240731


<h4>Background</h4>Artificial intelligence (AI) chatbots have recently gained use in medical practice by health care practitioners. Interestingly, the output of these AI chatbots was found to have varying degrees of hallucination in content and references. Such hallucinations generate doubts about their output and their implementation.<h4>Objective</h4>The aim of our study was to propose a reference hallucination score (RHS) to evaluate the authenticity of AI chatbots' citations.<h4>Methods</h4>  ...[more]

Similar Datasets

| S-EPMC8873348 | biostudies-literature
| S-EPMC10709780 | biostudies-literature
| S-EPMC10450584 | biostudies-literature
| S-EPMC11869545 | biostudies-literature
| S-EPMC10866461 | biostudies-literature
| S-EPMC7890640 | biostudies-literature
| S-EPMC10561522 | biostudies-literature
| S-EPMC10007007 | biostudies-literature
| S-EPMC11581577 | biostudies-literature
| S-EPMC10538589 | biostudies-literature