Ontology highlight
ABSTRACT: Objective
Sjögren's Syndrome (SS) is a chronic inflammatory autoimmune exocrinopathy, and although, the role of metabolism in the autoimmune responses has been discussed in diseases such as lupus erythematosus, rheumatoid arthritis, psoriasis and scleroderma. There is a lack of information regarding the metabolic implications of SS. Considering that the disease affects primarily salivary glands; the aim of this study is to evaluate the metabolic changes in the salivary glands' microenvironment using a targeted metabolomics approach.Methods
The saliva from 10 patients diagnosed with SS by the American-European consensus and 10 healthy volunteers was analyzed in an Ultra-high Performance Liquid Chromatograph Coupled Mass Spectrometry (UPLC-MS).Results
The results showed an increased concentration in SS of metabolites involved in oxidative stress such as lactate, alanine and malate, and amino acids involved in the growth and proliferation of T-cells, such as arginine, leucine valine and isoleucine.Conclusions
These results revealed that is possible to differentiate the metabolic profile of SS and healthy individuals using a small amount of saliva, which in its turn may reflect the cellular changes observed in the microenvironments of damaged salivary glands from these patients.
SUBMITTER: Piacenza Florezi G
PROVIDER: S-EPMC11334732 | biostudies-literature | 2024
REPOSITORIES: biostudies-literature
Piacenza Florezi Giovanna G Pereira Barone Felippe F Izidoro Mario Augusto MA Soares-Jr José Maria JM Coutinho-Camillo Claudia Malheiros CM Lourenço Silvia Vanessa SV
Clinics (Sao Paulo, Brazil) 20240803
<h4>Objective</h4>Sjögren's Syndrome (SS) is a chronic inflammatory autoimmune exocrinopathy, and although, the role of metabolism in the autoimmune responses has been discussed in diseases such as lupus erythematosus, rheumatoid arthritis, psoriasis and scleroderma. There is a lack of information regarding the metabolic implications of SS. Considering that the disease affects primarily salivary glands; the aim of this study is to evaluate the metabolic changes in the salivary glands' microenvir ...[more]