Project description:BackgroundRadix Ardisia (Jab Bik Lik Jib) is a common Miao medicine and is widely distributed in the Guizhou region of southern China. The botanical origin of Radix Ardisia includes the dry root and rhizome of Ardisia Crenata Sims (ACS) or Ardisia Crispa (Thunb.) A.DC. (AC), which are closely related species morphologically. However, the secondary metabolites in their roots are different from one another, especially the flavonoids, and these differences have not been thoroughly explored at the molecular level. This project preliminarily identified regulatory molecular mechanisms in the biosynthetic pathways of the flavonoids between ACS and AC using a multi-omics association analysis.MethodsIn this study, we determined the total levels of saponin, flavonoid, and phenolic in Radix Ardisia from different origins. Integrated transcriptome and metabolome analyses were used to identify the differentially expressed genes (DEGs) and differentially expressed metabolites (DEM). We also performed conjoint analyses on DEGs and DEMs to ascertain the degree pathways, and explore the regulation of flavonoid biosynthesis.ResultsThe total flavonoid and phenolic levels in ACS were significantly higher than in AC (P < 0.05). There were 17,685 DEGs between ACS vs. AC, 8,854 were upregulated and 8,831 were downregulated. Based on this, we continued to study the gene changes in the flavonoid biosynthesis pathway, and 100 DEGs involving flavonoid biosynthesis were differentially expressed in ACS and AC. We validated the accuracy of the RNA-seq data using qRT-PCR. Metabolomic analyses showed that 11 metabolites were involved in flavonoid biosynthesis including: Naringenin, Luteolin, Catechin, and Quercetin. A conjoint analysis of the genome-wide connection network revealed the differences in the types and levels of flavonoid compounds between ACS and AC. The correlation analysis showed that Naringenin, Luteolin, Catechin, and Quercetin were more likely to be key compounds in the flavonoid biosynthesis pathway also including 4CL, AOMT, CHS, CHI, DFR, F3'5'H, FLS, and LAR.ConclusionsThis study provides useful information for revealing the regulation of flavonoid biosynthesis and the regulatory relationship between metabolites and genes in the flavonoid biosynthesis pathway in Radix Ardisia from different origins.
Project description:Anthocyanin is the main component of pigment in red-fleshed kiwifruit. 'Jinhongguan' is a new cultivar of Actinidia arguta with red peel and flesh after harvest. However, the specific types of anthocyanin in the 'Jinhongguan' fruit and its biosynthesis pathways remain largely unknown. Here, the total anthocyanin content in the fruit color conversion process was determined. The results showed that total anthocyanin content increased with the deepening color of the peel and flesh. To identify the genes related to anthocyanin biosynthesis and the types of anthocyanins in the 'Jinhongguan' fruit, a combined analysis of transcriptome and anthocyanin-targeted metabolome was carried out. A total of 5751 common differentially expressed genes (DEGs) at different stages of peel and flesh were identified, of which 2767 were common up-DEGs and 2976 were common down-DEGs. KEGG and GO enrichment analyses showed that the common up-DEGs were significantly enriched in anthocyanin synthesis-related pathways, suggesting some up-DEGs are involved in anthocyanin biosynthesis. In total, 29 metabolites were detected in the flesh by anthocyanin-targeted metabolome. Among these, nine were differential accumulation metabolites (DAMs) in comparison to red flesh vs green flesh. Six DAMs were up-regulated, with five of them were cyanidins. The content of cyanidin-3-O-galactoside was much higher than that of other DAMs, making it the main pigment in 'Jinhongguan'. Moreover, a total of 36 anthocyanin synthesis-related structural genes, 27 MYB transcription factors (TFs), 37 bHLH TFs and 9 WDR TFs were screened from the common DEGs. Correlation analysis of transcriptome and metabolome revealed that 9 structural genes, 6 MYB TFs, 6 bHLH TFs and 1 WDR TF were significantly associated with cyanidin-3-O-galactoside. Further, qRT-PCR analysis demonstrated that structural genes (AaPAL3, Aa4CL3, AaCHS2/3/8/9/11, AaDFR1/2, AaANR1, UFGT3a and UFGT6b) and TFs (MYB108, bHLH30, bHLH94-1 and WD43) play important roles in cyanidin biosynthesis. Overall, this study identified cyanidin-3-O-galactoside as the main anthocyanin type and revealed key candidate genes of red coloration of post-harvest fruit in Actinidia arguta. These findings provided new insights into the color formation mechanism of post-harvest fruit and offered a theoretical basis for color regulation in kiwifruit.
Project description:The kiwifruit (Actinidia chinensis) is an economically and nutritionally important fruit crop with remarkably high vitamin C content. Here we report the draft genome sequence of a heterozygous kiwifruit, assembled from ~140-fold next-generation sequencing data. The assembled genome has a total length of 616.1 Mb and contains 39,040 genes. Comparative genomic analysis reveals that the kiwifruit has undergone an ancient hexaploidization event (?) shared by core eudicots and two more recent whole-genome duplication events. Both recent duplication events occurred after the divergence of kiwifruit from tomato and potato and have contributed to the neofunctionalization of genes involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism. As the first sequenced species in the Ericales, the kiwifruit genome sequence provides a valuable resource not only for biological discovery and crop improvement but also for evolutionary and comparative genomics analysis, particularly in the asterid lineage.
Project description:To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H, AaLDOX, AaUFGT, AaMYB, AabHLH, and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta, suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype, but is also a powerful tool for providing more valuable information for breeding.
Project description:Actinidia chinensis (kiwifruit) is a perennial horticultural crop species of the Actinidiaceae family with high nutritional and economic value. Two versions of the A. chinensis genomes have been previously assembled, based mainly on relatively short reads. Here, we report an improved chromosome-level reference genome of A. chinensis (v3.0), based mainly on PacBio long reads and Hi-C data. The high-quality assembled genome is 653 Mb long, with 0.76% heterozygosity. At least 43% of the genome consists of repetitive sequences, and the most abundant long terminal repeats were further identified and account for 23.38% of our novel genome. It has clear improvements in contiguity, accuracy, and gene annotation over the two previous versions and contains 40,464 annotated protein-coding genes, of which 94.41% are functionally annotated. Moreover, further analyses of genetic collinearity revealed that the kiwifruit genome has undergone two whole-genome duplications: one affecting all Ericales families near the K-T extinction event and a recent genus-specific duplication. The reference genome presented here will be highly useful for further molecular elucidation of diverse traits and for the breeding of this horticultural crop, as well as evolutionary studies with related taxa.
Project description:BackgroundWith the advent of high throughput genomic tools, it is now possible to undertake detailed molecular studies of individual species outside traditional model organisms. Combined with a good understanding of physiological processes, these tools allow researchers to explore natural diversity, giving a better understanding of biological mechanisms. Here a detailed study of fruit development from anthesis through to fruit senescence is presented for a non-model organism, kiwifruit, Actinidia chinensis ('Hort16A').ResultsConsistent with previous studies, it was found that many aspects of fruit morphology, growth and development are similar to those of the model fruit tomato, except for a striking difference in fruit ripening progression. The early stages of fruit ripening occur as the fruit is still growing, and many ripening events are not associated with autocatalytic ethylene production (historically associated with respiratory climacteric). Autocatalytic ethylene is produced late in the ripening process as the fruit begins to senesce.ConclusionBy aligning A. chinensis fruit development to a phenological scale, this study provides a reference framework for subsequent physiological and genomic studies, and will allow cross comparison across fruit species, leading to a greater understanding of the diversity of fruits found across the plant kingdom.
Project description:Red-fleshed kiwifruit (Actinidia chinensis Planch. 'Hongyang') is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of 'Hongyang' from seven developmental stages using Illumina sequencing. We mapped 39-54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement.
Project description:The kiwifruit cultivar Actinidia chinensis 'Hort16A' is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis 'Hort16A' canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase-leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis 'Hort16A' plants in two laboratory experiments.
Project description:Figs are an edible and medicinal plant rich in polyphenols and flavonoids with unique pharmacological effects. However, the mechanism of flavonoid synthesis in figs is not clear. In this study, fig fruits of six varieties were collected for RNA sequencing and UPLC-MS data collection. The results showed that a total of 39 differential metabolites were identified by targeted metabolomics, and their contents were determined by UPLC-MS. The clustered heat map analysis showed that most of the differential metabolites were highly accumulated in BRD and FY. A total of 62 flavonoid biosynthesis pathway genes were identified by transcriptome analysis, and FcCHS, FcCHI, FcFLS, FcCYP, and FcDFR were the key genes identified for the accumulation of flavonoids and flavonols in the dark-colored varieties. In addition, a total of 1671 transcription factor genes, mainly MYBs, bHLHs, and AP2/ERFs, were identified. This study will enrich the transcriptomic data of figs and provide some help in resolving the synthesis mechanism of fig flavonoids.