Project description:Background: The serum albumin level is reflective of the function of multiple organs, such as the liver and kidneys. However, the association between serum albumin and pulmonary function is unclear; therefore, this study aimed to determine the relationship between pulmonary function and serum albumin, including the threshold of serum albumin at the changes of the pulmonary function in the total population and in different strata of population. Methods: In this cross-sectional study, We examined the relationship between serum albumin and two independent indicators of pulmonary function: forced vital capacity (FVC) and forced expiratory volume in one second (FEV 1), using data from National Health and Nutrition Examination Survey (NHANES 2013–2014) (n = 3286). We used univariate analysis, stratified analysis, and multiple regression equation analysis to examine the correlation between serum albumin levels and FVC and FEV 1, and performed smoothed curve fitting, threshold effect, and saturation effect analysis (for stratification) to determine the threshold serum albumin level at which FVC and FEV 1 begin to change. Results: The adjusted smoothed curve fit plot showed a linear relationship between serum albu-min levels and FVC: for every 1 g/dl increase in the serum albumin level, FVC increased by 80.40 ml (11.18, 149.61). Serum albumin and FEV 1 showed a non-linear relationship. When serum al-bumin reached the inflection point (3.8 g/dl), FEV 1 increased with increasing serum albumin and the correlation coefficient β was 205.55 (140.15, 270.95). Conclusion: Serum albumin is a core indicator of liver function, and abnormal liver function has a direct impact on pulmonary function. In the total population, serum albumin levels were linearly and positively correlated with FVC. Above 3.6 g/dl, serum albumin was positively correlated with FEV 1. Based on the total population and different population strata, this study revealed a positive association between the serum albumin level and pulmonary function, and identified the threshold of serum albumin when Indicators of pulmonary function tests starts to rise, providing a new early warning indicator for people at high risk of pulmonary insufficiency and has positive implications for the prevention of combined respiratory failure in patients with liver insufficiency.
Project description:Although sleep duration has been extensively studied in metabolic diseases, few studies have investigated the impact of sleep duration on chronic kidney disease. The aim of this study was to examine the relationship between sleep duration and albuminuria in the general population. Among 24,948 adults who participated in the 2011-2014 KNHANES, a total of 19,994 subjects were included in this analysis. Subjects were categorized into the following five groups according to self-reported sleep duration: less than 5 h, 6 h, 7 h, 8 h, and more than 9 h. The association between sleep duration and urinary albumin-creatinine ratio (UACR) was examined cross-sectionally. Subjects with both short and long sleep durations were significantly associated with higher UACR levels and higher proportions of patients with microalbuminuria (30-299 mg/g) and macroalbuminuria (?300 mg/g) compared to those with a sleep duration of 7 hours. The U-shaped association between sleep duration and UACR remained significant even after adjustment for potential confounders, including age, sex, body mass index, smoking, alcohol, education, income, exercise, estimated glomerular filtration rate, diabetes mellitus, hypertension and hypercholesterolemia. The U-shaped association is more evident in the subgroup aged 65 or older, or in female subjects. Our findings suggest that both short and long sleep durations have a U-shaped association with UACR levels in the general population, independent of potential confounders.
Project description:BackgroundSleep disturbance is linked to neurodegenerative diseases and the related brain pathophysiology. Serum neurofilament light chain (NfL) is a reliable biomarker for neurological disorders. This study examined the association between sleep characteristics and serum NfL levels in American adults.MethodsIn this cross-sectional study, data from the 2013-2014 US National Health and Nutrition Examination Survey were utilized. Participants were categorized into short (≤ 6 h), normal (7-8 h), and long (≥ 9 h) sleep groups based on their self-reported sleep durations. Sleep duration, trouble sleeping, and diagnosed sleep disorders were queried, forming "sleep pattern (healthy, moderate, and poor)." The association between sleep characteristics and serum NfL levels was assessed using multivariate linear regression models. Stratification and sensitivity analyses were conducted to determine the stability of results.ResultsOverall, 1637 participants were included; among them, 48.2% were male and 51.8% were female (mean ± SD, age: 46.9 ± 15.5 years) and 38.8% reported sleeping for ≤ 6 h, 54.4% for 7-8 h, and 6.8% for ≥ 9 h. Participants with longer sleep duration, poor sleep pattern, diagnosed sleep disorders, or trouble sleeping exhibited higher serum NfL levels. A positive correlation was found between extended sleep and elevated serum NfL levels (Adjusted β = 4.82, 95%CI: 2.2, 7.44, P < 0.001), with no significant correlation observed in the short-sleep group or those with poor sleep pattern. Stratified and sensitivity analyses confirmed the robustness of the relationship between longer sleep and elevated serum NfL levels.ConclusionsA long sleep duration is associated with higher serum NfL levels than a normal sleep duration in American adults.
Project description:Identifying the genes underlying quantitative trait loci (QTL) for disease has proven difficult, mainly due to the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals and test candidate genes. In addition to identifying the causative genes, defining the pathways that are affected by these QTL is of major importance as it can give us insight into the disease process and provide evidence to support candidate genes. In this study we mapped three significant and one suggestive QTL on Chromosomes (Chrs) 1, 4, 15, and 17, respectively, for increased albumin excretion (measured as albumin-to-creatinine ratio) in a cross between the MRL/MpJ and SM/J mouse inbred strains. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL. Among these were the glycan degradation, leukocyte migration, and antigen presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL, but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease.
Project description:Identifying the genes underlying quantitative trait loci (QTL) for disease has proven difficult, mainly due to the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals and test candidate genes. In addition to identifying the causative genes, defining the pathways that are affected by these QTL is of major importance as it can give us insight into the disease process and provide evidence to support candidate genes. In this study we mapped three significant and one suggestive QTL on Chromosomes (Chrs) 1, 4, 15, and 17, respectively, for increased albumin excretion (measured as albumin-to-creatinine ratio) in a cross between the MRL/MpJ and SM/J mouse inbred strains. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL. Among these were the glycan degradation, leukocyte migration, and antigen presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL, but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease. Female MRL/MpJ (MRL) mice were crossed with male SM/J (SM) mice; their progeny were intercrossed to produce 371 F2 animals. Only 173 F2 males were used for this study. This submission represents the expression profiling component of the study.
Project description:BackgroundOrganophosphate esters (OPEs) are synthetic chemicals found in many consumer products, including furniture, electronics, processed foods, and building materials. Emerging in vitro and in vivo studies suggest that OPEs are metabolism disrupting compounds; however, epidemiologic studies investigating their associations with adiposity markers are sparse.ObjectiveWe examined cross-sectional associations between OPE biomarkers and adiposity measures among U.S. children and adults participating in the National Health and Nutrition Examination Survey (NHANES: 2013-2014).MethodsConcentrations of five OPE metabolites were quantified in urine: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(2-chloroethyl) phosphate (BCEP), dibutyl phosphate (DBUP), and bis(1-chloro-2-propyl) phosphate (BCPP). We conducted covariate-adjusted logistic and linear regressions to examine associations between log2-transformed and dichotomized OPE metabolite concentrations and obesity, body mass index (BMI), and waist circumference (WC), separately among 784 children (6-19 years) and 1672 adults (≥20 years). We also assessed heterogeneity of associations by sex.ResultsDBUP concentrations were inversely associated with the prevalence odds of being obese vs. normal weight in children (adjusted Prevalence Odds Ratio, aPOR: 0.82, 95% Confidence Interval, 95% CI: 0.70, 0.95) and adults (aPOR: 0.83, 95% CI: 0.72, 0.96). DBUP was also significantly associated with lower BMI z-scores (β:-0.08, 95% CI:-0.17, 0.01) and WC (β:-0.71, 95% CI: -1.49, 0.07) in children. BCEP concentrations were associated with increased prevalence odds of being overweight vs. normal weight (aPOR: 1.15, 95% CI: 1.01, 1.32) among children; similar, albeit not statistically significant, relationships were observed with other child adiposity outcomes. Among adults, detectable BCPP concentrations were associated with increased prevalence odds of being obese vs. normal weight (aPOR: 1.70, 95% CI: 1.21, 2.38) and having a high vs. normal WC (aPOR: 1.51, 95% CI: 1.11, 2.07) as well as higher BMI (β: 1.31, 95% CI: 0.30, 2.33). Other OPE metabolites were not consistently associated with adiposity measures among adults. Although associations of BCPP exposure with adiposity outcomes were generally inverse among boys, but not girls, we did not observe consistent evidence of sexually-dimorphic associations for other OPE metabolites.ConclusionsExposure to select OPEs may be differentially associated with body size among children and adults. Given the cross-sectional design of the present study, future prospective studies are needed to confirm these findings.
Project description:ObjectivesThe high incidence of abdominal aortic calcification (AAC) is well-documented in individuals with severe renal function decline. However, there is limited research on the historical relationship between estimated glomerular filtration rate (eGFR) and the risk of AAC occurrence in the general population undergoing routine medical examinations. The main objective of this study was to investigate the historical relationship between eGFR and AAC in the general population of the United States.MethodsWe performed a cross-sectional study using the National Health and Nutrition Examination Survey 2013-2014 database. Weighted multivariate linear regression models were used to estimate the associations of eGFR with AAC score. Smooth curve fitting and two-piecewise linear regression were employed to explore the potential non-linear relationship.ResultsA total of 2,978 participant (48.22% were male) aged 40-80 years were included in this study. The fully-adjusted model demonstrated a negative correlation between eGFR and AAC score (β = -0.015, 95% CI: -0.023 to -0.006). However, when applying the smooth curve fitting method, a U-shaped relationship was identified, and the inflection point was calculated at 76.43 ml/min/1.73 m2 using the two-piecewise linear regression model.ConclusionsThere was a U-shaped association between eGFR and AAC score in general US adults, with an inflection point at about 76.43 ml/min/1.73 m2.
Project description:BackgroundCaffeine is one of the most commonly used psychoactive drugs in the world, and provides many health benefits including alertness, improved memory, and reducing inflammation. Despite these benefits, caffeine has been implicated in a number of adverse health outcomes possibly due to effects within the endocrine system, effects that may contribute to impaired reproductive function and low testosterone in men. Previous studies have investigated associations between caffeine consumption and testosterone levels in men, although the quantity and generalizability of these studies is lacking, and the results between studies are conflicting and inconclusive.MethodsUsing data from a cross-sectional study of 372 adult men in the 2013-2014 NHANES survey cycle, the researchers set out to characterize the association between serum testosterone levels, caffeine, and 14 caffeine metabolites.ResultsMultivariable, weighted linear regression revealed a significant inverse association between caffeine and testosterone. Multivariable, linear regression revealed significant, inverse associations between 6 xanthine metabolic products of caffeine and testosterone. Inverse associations were observed between 5-methyluric acid products and testosterone, as well as between 5-acetlyamino-6-amino-3-methyluracil and testosterone. A significant, positive association was observed for 7-methyl xanthine, 3,7-dimethyluric acid, and 7-methyluric acid. Logistic regression models to characterize the association between 2 biologically active metabolites of caffeine (theobromine and theophylline) and odds of low testosterone (< 300 ng/dL) were non-significant.ConclusionsThese findings suggest a potential role for caffeine's contribution to the etiology of low testosterone and biochemical androgen deficiency. Future studies are warranted to corroborate these findings and elucidate biological mechanisms underlying this association.
Project description:BackgroundChronic kidney disease (CKD) is believed to be associated with an increased risk for cancer, especially urinary tract cancer. However, previous studies predominantly focused on the association of decreased estimated glomerular filtration rate (eGFR) with cancer. In this study, we investigated the association of albuminuria with cancer incidence, adjusted for eGFR.MethodsWe included 8490 subjects in the Prevention of Renal and Vascular End-stage Disease (PREVEND) observational study. Urinary albumin excretion (UAE) was measured in two 24-hour urine specimens at baseline. Primary outcomes were the incidence of overall and urinary tract cancer. Secondary outcomes were the incidence of other site-specific cancers, and mortality due to overall, urinary tract, and other site-specific cancers.ResultsMedian baseline UAE was 9.4 (IQR, 6.3-17.8) mg/24 h. During a median follow-up of 17.7 years, 1341 subjects developed cancer (of which 177 were urinary tract cancers). After multivariable adjustment including eGFR, every doubling of UAE was associated with a 6% (hazard ratios (HR), 1.06, 95% confidence intervals (CI), 1.02-1.10), and 14% (HR, 1.14, 95% CI, 1.04-1.24) higher risk of overall and urinary tract cancer incidence, respectively. Except for lung and hematological cancer, no associations were found between UAE and the incidence of other site-specific cancer. Doubling of UAE was also associated with a higher risk of mortality due to overall and lung cancer.ConclusionsHigher albuminuria is associated with a higher incidence of overall, urinary tract, lung, and hematological cancer, and with a higher risk of mortality due to overall and lung cancers, independent of baseline eGFR.
Project description:IntroductionThe relationship between thyroid function/homeostasis parameters and renal function has been extensively studied. However, the relationship between thyroid function and thyroid homeostasis parameters with albuminuria among elderly individuals remains unclear.MethodsThe population was divided into an albuminuria group and a non-albuminuria group for baseline characteristic difference analysis. Multivariable logistic regression was used to test the association between thyroid function, and thyroid homeostasis parameters and albuminuria. The nonlinear relationship was explored with restricted cubic splines. Meanwhile, we investigated whether the relationship also existed in the diabetes and hypertension subgroups. Receiver operating characteristic (ROC) curves were used to assess the effectiveness of the indices.ResultsFT4 and TFQIFT4 were positively correlated with albuminuria (OR = 1.12; 95% CI = 1.02-1.23, p = 0.02; OR = 1.79; 95% CI = 1.08-2.99, p = 0.03), and FT3/FT4 was negatively correlated with albuminuria (OR = 0.03; 95% CI = 0.00-0.26, p = 0.003). Additionally, the nonlinear relationship between FT3/FT4 as well as TSHI and albuminuria was approximately U-shaped. Similar results were observed in the hypertension subgroup but not in the diabetes subgroup. There was a U-shaped nonlinear relationship between FT3 and albuminuria in the diabetes group. In addition, FT3/FT4 performed better than TFQI, TT4RI, and TSHI in ROC analyses for albuminuria prediction.ConclusionFT4, TFQIFT4, and a low FT3/FT4 ratio were risk factors for albuminuria in euthyroid individuals over 60 years old. However, FT3 was more associated with albuminuria in the diabetes subgroup. TSH was not associated with albuminuria in any analysis. In our study, we attempted to provide more reasonable thyroid parameters and basis for evaluating patients with underlying albuminuria. FT3/FT4 may be used as a helpful indicator to predict albuminuria and provide novel ideas for the evaluation and treatment of albuminuria.