Project description:The title complex, [Co(C(15)H(11)N(3))(2)](C(4)N(3))(2), is built up from discrete [Co(terpy)(2)](2+) cations (terpy is 2,2':6',2''-terpyridine) and [C(CN)(3)](-) anions. In the cation, the Co(II) atom is coordinated by two terpy mol-ecules, giving a distorted octa-hedral geometry. The tricyano-methanide anions are not directly coordinated to the Co(II) atom, but some weak C-H⋯N hydrogen bonds involving the terminal N atoms of the tricyaomethanide ions and the terpyridine H atoms link anions and cations building a three-dimensional network.
Project description:Recent studies on molecular 2D materials with high tunability of structure and function have focused mostly on the discovery of new precursors. Here, we demonstrate a facile one-pot synthesis of laminated 2D coordination polymer films comprising bis(terpyridine)iron and cobalt at a water/dichloromethane interface. Cross-sectional elemental mapping unveiled the stratum-like structure of the film and revealed that the second layer grows to the dichloromethane side below the first layer. Cyclic voltammetry clarified that the bottom layer mediates charge transfer between the top layer and the substrate in a narrow potential region of mixed-valence states. Furthermore, the bilayer film sandwiched by electrodes in a dry condition shows stable rectification character, and the barrier voltage corresponds to the redox potential difference between the two layers. This study introduces a new strategy for polymer design to explore the materials science of molecular 2D materials.
Project description:The title complex, [Co(C(22)H(14)N(4))(2)]Cl(2), has been synthesized by a solvothermal reaction of the 4'-(4-cyano-phen-yl)-2,2':6',2''-terpyridine ligand with CoCl(2)·6H(2)O. The cobalt(II) ion is six-coordinated by two tridentate ligands in a distorted octa-hedral geometry. The benzene rings form dihedral angles of 30.02?(7) and 30.26?(7)° with the mean planes of the terpyridine ring systems. The chloride anions are statistically disordered over two positions with refined site occupancies of 0.601?(2) and 0.399?(2).
Project description:Although the Nafion membrane has a high energy efficiency, long service life, and operational flexibility when applied for vanadium redox flow battery (VRFB) applications, its applications are limited due to its high vanadium permeability. In this study, anion exchange membranes (AEMs) based on poly(phenylene oxide) (PPO) with imidazolium and bis-imidazolium cations were prepared and used in VRFBs. PPO with long-pendant alkyl-side-chain bis-imidazolium cations (BImPPO) exhibits higher conductivity than the imidazolium-functionalized PPO with short chains (ImPPO). ImPPO and BImPPO have a lower vanadium permeability (3.2 × 10-9 and 2.9 × 10-9 cm2 s-1) than Nafion 212 (8.8 × 10-9 cm2 s-1) because the imidazolium cations are susceptible to the Donnan effect. Furthermore, under the current density of 140 mA cm-2, the VRFBs assembled with ImPPO- and BImPPO-based AEMs exhibited a Coulombic efficiency of 98.5% and 99.8%, respectively, both of which were higher than that of the Nafion212 membrane (95.8%). Bis-imidazolium cations with long-pendant alkyl side chains contribute to hydrophilic/hydrophobic phase separation in the membranes, thus improving the conductivity of membranes and the performance of VRFBs. The VRFB assembled with BImPPO exhibited a higher voltage efficiency (83.5%) at 140 mA cm-2 than that of ImPPO (77.2%). These results of the present study suggest that the BImPPO membranes are suitable for VRFB applications.
Project description:A pyrazole-based ligand substituted with terpyridine groups at the 3 and 5 positions has been synthesized to form the dinuclear cobalt complex 1, that electrocatalytically reduces carbon dioxide (CO2 ) to carbon monoxide (CO) in the presence of Brønsted acids in DMF. Chemical, electrochemical and UV-vis spectro-electrochemical studies under inert atmosphere indicate pairwise reduction processes of complex 1. Infrared spectro-electrochemical studies under CO2 and CO atmosphere are consistent with a reduced CO-containing dicobalt complex which results from the electroreduction of CO2 . In the presence of trifluoroethanol (TFE), electrocatalytic studies revealed single-site mechanism with up to 94 % selectivity towards CO formation when 1.47 M TFE were present, at -1.35 V vs. Saturated Calomel Electrode in DMF (0.39 V overpotential). The low faradaic efficiencies obtained (<50 %) are attributed to the generation of CO-containing species formed during the electrocatalytic process, which inhibit the reduction of CO2 .
Project description:Anion exchange blend membranes (AEBMs) were prepared for use in Vanadium Redox Flow Batteries (VRFBs). These AEBMs consisted of 3 polymer components. Firstly, PBI-OO (nonfluorinated PBI) or F6-PBI (partially fluorinated PBI) were used as a matrix polymer. The second polymer, a bromomethylated PPO, was quaternized with 1,2,4,5-tetramethylimidazole (TMIm) which provided the anion exchange sites. Thirdly, a partially fluorinated polyether or a non-fluorinated poly (ether sulfone) was used as an ionical cross-linker. While the AEBMs were prepared with different combinations of the blend polymers, the same weight ratios of the three components were used. The AEBMs showed similar membrane properties such as ion exchange capacity, dimensional stability and thermal stability. For the VRFB application, comparable or better energy efficiencies were obtained when using the AEBMs compared to the commercial membranes included in this study, that is, Nafion (cation exchange membrane) and FAP 450 (anion exchange membrane). One of the blend membranes showed no capacity decay during a charge-discharge cycles test for 550 cycles run at 40 mA/cm² indicating superior performance compared to the commercial membranes tested.
Project description:Most phosphoproteomics experiments rely on prefractionation of tryptic digests before online liquid chromatography-mass spectrometry. This study compares the potential and limitations of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and anion-exchange chromatography (AEX). At a pH higher than 5, phosphopeptides have two negative charges per residue and are well-retained in AEX. However, peptides with one or two phosphate groups are not separated from peptides with multiple Asp or Glu residues, interfering with the identification of phosphopeptides. At a pH of 2, phosphate residues have just a single negative charge but Asp and Glu are uncharged. This facilitates the separation of phosphopeptides from unmodified acidic peptides. Singly phosphorylated peptides are retained weakly under these conditions, due to electrostatic repulsion, unless hydrophilic interaction is superimposed in the ERLIC mode. Weak anion-exchange (WAX) and strong anion-exchange (SAX) columns were compared, with both peptide standards and a HeLa cell tryptic digest. The SAX column exhibited greater retention at pH 6 than did the WAX column. However, only about 60% as many phosphopeptides were identified with SAX at pH 6 than via ERLIC at pH 2. In one ERLIC run, 12 467 phosphopeptides were identified, including 4233 with more than one phosphate. We conclude that chromatography of phosphopeptides is best performed at low pH in the ERLIC mode. Under those conditions, the performances of the SAX and WAX materials were comparable. The data have been deposited with the ProteomeXchange with identifier PXD001333.
Project description:Room-temperature synthesized 3D hierarchical cobalt vanadate (Co3V2O8) nanosheet arrays on Ni foam for use as supercapacitor electrode is presented. In a 3 M KOH electrolyte, the electrode exhibits a capacitance of 109.9 mA h g-1 (878.9 F g-1) at a current density of 1 A g-1. The capacitance is enhanced to 198.1 mA h g-1 (1584.5 F g-1) at 1 A g-1 through the addition of 0.05 M redox-additive K3[Fe(CN)6] into the KOH electrolyte. Furthermore, the Co3V2O8/activated carbon asymmetric supercapacitor cell with the advanced electrolyte outperforms most reported Co3V2O8-based electrodes with a remarkable energy density of 55.5 W h kg-1 at an 800 W kg-1 power density. Combining a facile synthetic strategy and excellent electrochemical performance, the obtained Co3V2O8 exhibits potential for practical application.
Project description:We developed an efficient and convenient electrochemical method to synthesize π-conjugated redox metal-complex linear polymer wires composed of azobenzene-bridged bis(terpyridine)metal (2-M, M = Fe, Ru) units covalently immobilized on glassy carbon (GC). Polymerization proceeds by electrochemical oxidation of bis(4'-(4-anilino)-2,2':6',2″-terpyridine)metal (1-M) in a water-acetonitrile-HClO4 solution, affording ultralong wires up to 7400 mers (corresponding to ca. 15 μm). Both 2-Fe and 2-Ru undergo reversible redox reactions, and their redox behaviors indicate remarkably fast redox conduction. Anisotropic hetero-metal-complex polymer wires with Fe and Ru centers are constructed via stepwise electropolymerization. The cyclic voltammograms of two hetero-metal-complex polymer wires, GC/[2-Fe]-[2-Ru] (3) and GC/[2-Ru]-[2-Fe] (4), show irreversible redox reactions with opposite electron transfer characteristics, indicating redox diodelike behavior. In short, the present electrochemical method is useful to synthesize polymer wire arrays and to integrate functional molecules on carbon.
Project description:Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.