Unknown

Dataset Information

0

Unraveling RNA contribution to the molecular origins of bacterial surface-enhanced Raman spectroscopy (SERS) signals.


ABSTRACT: Surface-enhanced Raman spectroscopy (SERS) is widely utilized in bacterial analyses, with the dominant SERS peaks attributed to purine metabolites released during sample preparation. Although adenosine triphosphate (ATP) and nucleic acids are potential molecular origins of these metabolites, research on their exact contributions remains limited. This study explored purine metabolite release from E. coli and RNA integrity following various sample preparation methods. Standard water washing generated dominant SERS signals within 10 s, a duration shorter than the anticipated RNA half-lives under starvation. Evaluating RNA integrity indicated that the most abundant ribosomal RNA species remained intact for hours post-washing, whereas messenger RNA and transfer RNA species degraded gradually. This suggests that bacterial SERS signatures observed after the typical washing step could originate from only a small fraction of endogenous purine-containing molecules. In contrast, acid depurination led to degradation of most RNA species, releasing about 40 times more purine derivatives than water washing. Mild heating also instigated the RNA degradation and released more purine derivatives than water washing. Notably, differences were also evident in the dominant SERS signals following these treatments. This work provides insights into SERS-based studies of purine metabolites released by bacteria and future development of methodologies.

SUBMITTER: Chien JY 

PROVIDER: S-EPMC11341899 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unraveling RNA contribution to the molecular origins of bacterial surface-enhanced Raman spectroscopy (SERS) signals.

Chien Jun-Yi JY   Gu Yong-Chun YC   Chien Chia-Chen CC   Chang Chia-Ling CL   Cheng Ho-Wen HW   Chiu Shirley Wen-Yu SW   Nee Yeu-Jye YJ   Tsai Hsin-Mei HM   Chu Fang-Yeh FY   Tang Hui-Fei HF   Wang Yuh-Lin YL   Lin Chi-Hung CH  

Scientific reports 20240822 1


Surface-enhanced Raman spectroscopy (SERS) is widely utilized in bacterial analyses, with the dominant SERS peaks attributed to purine metabolites released during sample preparation. Although adenosine triphosphate (ATP) and nucleic acids are potential molecular origins of these metabolites, research on their exact contributions remains limited. This study explored purine metabolite release from E. coli and RNA integrity following various sample preparation methods. Standard water washing genera  ...[more]

Similar Datasets

| S-EPMC10040700 | biostudies-literature
| S-EPMC7398609 | biostudies-literature
| S-EPMC7564787 | biostudies-literature
| S-EPMC9260712 | biostudies-literature
| S-EPMC10921819 | biostudies-literature
| S-EPMC10610586 | biostudies-literature
| S-EPMC9078556 | biostudies-literature
| S-EPMC4911336 | biostudies-literature
| S-EPMC11200166 | biostudies-literature
| S-EPMC10926779 | biostudies-literature