Project description:MicroRNAs (miRNAs) are postulated to be important regulators in cancers. Here, we report a genome-wide miRNA expression analysis in 52 acute myeloid leukemia (AML) samples with common translocations, including t(8;21)/AML1(RUNX1)-ETO(RUNX1T1), inv(16)/CBFB-MYH11, t(15;17)/PML-RARA, and MLL rearrangements. Distinct miRNA expression patterns were observed for t(15;17), MLL rearrangements, and core-binding factor (CBF) AMLs including both t(8;21) and inv(16) samples. Expression signatures of a minimum of two (i.e., miR-126/126*), three (i.e., miR-224, miR-368, and miR-382), and seven (miR-17-5p and miR-20a, plus the aforementioned five) miRNAs could accurately discriminate CBF, t(15;17), and MLL-rearrangement AMLs, respectively, from each other. We further showed that the elevated expression of miR-126/126* in CBF AMLs was associated with promoter demethylation but not with amplification or mutation of the genomic locus. Our gain- and loss-of-function experiments showed that miR-126/126* inhibited apoptosis and increased the viability of AML cells and enhanced the colony-forming ability of mouse normal bone marrow progenitor cells alone and particularly, in cooperation with AML1-ETO, likely through targeting Polo-like kinase 2 (PLK2), a tumor suppressor. Our results demonstrate that specific alterations in miRNA expression distinguish AMLs with common translocations and imply that the deregulation of specific miRNAs may play a role in the development of leukemia with these associated genetic rearrangements.
Project description:Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The disease is characterized by various cytogenetic and molecular abnormalities with distinct prognoses and gene expression profiles. Emerging evidence has suggested that circulating microRNAs (miRNAs) could serve as noninvasive biomarkers for cancer detection; however, little is known about circulating miRNA profiles in AML patients. In this study, a genome-wide serum miRNA expression analysis was performed using Solexa sequencing for initial screen, followed by validation with real-time PCR assays. The analysis was conducted on training and verification sets of serum samples from 140 newly diagnosed AML patients and 135 normal adult donors. After a two-phase selection and validation process, 6 miRNAs, miR-10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p and miR-320d, were found to have significantly different expression levels in AML compared with control serum samples. Furthermore, unsupervised clustering analysis revealed the remarkable ability of the 6-miRNA profile to differentiate between AML patients and normal controls. The areas under the ROC curve for the selected miRNAs ranged from 0.8129 to 0.9531. More importantly, miR-181b-5p levels in serum were significantly associated with overall survival. These data demonstrated that the expression patterns of circulating miRNAs were systematically altered in AML and miR-181b-5p may serve as a predictor for overall survival in AML patients.
Project description:Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, whereas acute myeloid leukemia (AML) is the most common acute leukemia in adults. In general, ALL has a better prognosis than AML. To understand the distinct mechanisms in leukemogenesis between ALL and AML and to identify markers for diagnosis and treatment, we performed a large-scale genome-wide microRNA (miRNA, miR) expression profiling assay and identified 27 miRNAs that are differentially expressed between ALL and AML. Among them, miR-128a and -128b are significantly overexpressed, whereas let-7b and miR-223 are significantly down-regulated in ALL compared with AML. They are the most discriminatory miRNAs between ALL and AML. Using the expression signatures of a minimum of two of these miRNAs resulted in an accuracy rate of >95% in the diagnosis of ALL and AML. The differential expression patterns of these four miRNAs were validated further through large-scale real-time PCR on 98 acute leukemia samples covering most of the common cytogenetic subtypes, along with 10 normal control samples. Furthermore, we found that overexpression of miR-128 in ALL was at least partly associated with promoter hypomethylation and not with an amplification of its genomic locus. Taken together, we showed that expression signatures of as few as two miRNAs could accurately discriminate ALL from AML, and that epigenetic regulation might play an important role in the regulation of expression of miRNAs in acute leukemias.
Project description:Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34+(CD38low/-) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34+ AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes. Although CD34+ AML cells are highly dependent on glucose oxidation and glycolysis for energy, those from intermediate- and adverse-risk patients reveal increased mitochondrial dependence. Extracellular vesicles from AML are mainly enriched in stem cell markers and express antioxidant GPX3, with their profiles showing potential prognostic value. Extracellular vesicles enhance mitochondrial functionality and dependence on CD34+ AML cells via the glutathione/GPX4 axis. Notably, extracellular vesicles from adverse-risk patients enhance leukemia cell engraftment in vivo. Here, we show a potential noninvasive approach based on liquid 'cell-extracellular vesicle' biopsy toward a redefined metabolic stratification in AML.
Project description:MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD–dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.
Project description:Acute myeloid leukemia (AML) in children is a complex and heterogeneous disease. The identification of reliable and stable molecular biomarkers for diagnosis, especially early diagnosis, remains a significant therapeutic challenge. Aberrant microRNA expression could be used for cancer diagnosis and treatment selection. Here, we describe a novel bioinformatics model for the prediction of microRNA biomarkers for the diagnosis of paediatric AML based on computational functional analysis of the microRNA regulatory network substructure. microRNA-196b, microRNA-155 and microRNA-25 were identified as putative diagnostic biomarkers for pediatric AML. Further systematic analysis confirmed the association of the predicted microRNAs with the leukemogenesis of AML. In vitro q-PCR experiments showed that microRNA-155 is significantly overexpressed in children with AML and microRNA-196b is significantly overexpressed in subgroups M4-M5 of the French-American-British classification system. These results suggest that microRNA-155 is a potential diagnostic biomarker for all subgroups of paediatric AML, whereas microRNA-196b is specific for subgroups M4-M5.
Project description:Sepsis is a life-threatening condition with high hospital mortality. Elevated mortality has also been observed in patients after hospital discharge, associated with post sepsis syndrome (PSS), causing systemic impairments and reduced life quality. The etiology of PSS is still not completely known but certainly involves inflammation. Extracellular vesicles (EV) are recognized as a notable mechanism of intercellular communication in inflammatory processes. It has been reported that EV microRNA (miRNA) production patterns during the acute phase of the disease may persist until after sepsis resolution and are associated with PSS. Methods: We employed mass spectrometry and qPCR to characterize the protein and miRNA composition of plasma-derived EVs of 35 patients during sepsis-related hospitalization and after discharge (post-sepsis) for up to three years. Findings: Fifteen differentially expressed EVs miRNAs (DEMiRs) were identified in septic patients compared to the control group. Predictive analyses revealed that these DEMiRs could influence inflammation by modulating pathways mediated by the activation of NF-κB, STAT3, and TLR4. Thirteen miRNAs (-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p, -148a -3p, -191-5p, -195-5p, -223-3p) were downregulated in the death group compared to the survivor group and are candidates for serving as prognostic markers of survival in the Intensive Care Unit. The expression of 11 miRNAs (-15b-5p, -16-5p, -21-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p -195- 5p and -223-3p) was lower one year after ICU discharge than the control group. Interpretation: The miRNAs identified in the present study represent potential biomarkers for the survival prognosis of post-sepsis patients.