Ontology highlight
ABSTRACT: Aims/hypothesis
Our study aims to uncover glycaemic phenotype heterogeneity in type 1 diabetes.Methods
In the Study of the French-speaking Society of Type 1 Diabetes (SFDT1), we characterised glycaemic heterogeneity thanks to a set of complementary metrics: HbA1c, time in range (TIR), time below range (TBR), CV, Gold score and glycaemia risk index (GRI). Applying the Discriminative Dimensionality Reduction with Trees (DDRTree) algorithm, we created a phenotypic tree, i.e. a 2D visual mapping. We also carried out a clustering analysis for comparison.Results
We included 618 participants with type 1 diabetes (52.9% men, mean age 40.6 years [SD 14.1]). Our phenotypic tree identified seven glycaemic phenotypes. The 2D phenotypic tree comprised a main branch in the proximal region and glycaemic phenotypes in the distal areas. Dimension 1, the horizontal dimension, was positively associated with GRI (coefficient [95% CI]) (0.54 [0.52, 0.57]), HbA1c (0.39 [0.35, 0.42]), CV (0.24 [0.19, 0.28]) and TBR (0.11 [0.06, 0.15]), and negatively with TIR (-0.52 [-0.54, -0.49]). The vertical dimension was positively associated with TBR (0.41 [0.38, 0.44]), CV (0.40 [0.37, 0.43]), TIR (0.16 [0.12, 0.20]), Gold score (0.10 [0.06, 0.15]) and GRI (0.06 [0.02, 0.11]), and negatively with HbA1c (-0.21 [-0.25, -0.17]). Notably, socioeconomic factors, cardiovascular risk indicators, retinopathy and treatment strategy were significant determinants of glycaemic phenotype diversity. The phenotypic tree enabled more granularity than traditional clustering in revealing clinically relevant subgroups of people with type 1 diabetes.Conclusions/interpretation
Our study advances the current understanding of the complex glycaemic profile in people with type 1 diabetes and suggests that strategies based on isolated glycaemic metrics might not capture the complexity of the glycaemic phenotypes in real life. Relying on these phenotypes could improve patient stratification in type 1 diabetes care and personalise disease management.
SUBMITTER: Fagherazzi G
PROVIDER: S-EPMC11343912 | biostudies-literature | 2024 May
REPOSITORIES: biostudies-literature
Fagherazzi Guy G Aguayo Gloria A GA Zhang Lu L Hanaire Hélène H Picard Sylvie S Sablone Laura L Vergès Bruno B Hamamouche Naïma N Detournay Bruno B Joubert Michael M Delemer Brigitte B Guilhem Isabelle I Vambergue Anne A Gourdy Pierre P Hadjadj Samy S Velayoudom Fritz-Line FL Guerci Bruno B Larger Etienne E Jeandidier Nathalie N Gautier Jean-François JF Renard Eric E Potier Louis L Benhamou Pierre-Yves PY Sola Agnès A Bordier Lyse L Bismuth Elise E Prévost Gaëtan G Kessler Laurence L Cosson Emmanuel E Riveline Jean-Pierre JP
Diabetologia 20240523 8
<h4>Aims/hypothesis</h4>Our study aims to uncover glycaemic phenotype heterogeneity in type 1 diabetes.<h4>Methods</h4>In the Study of the French-speaking Society of Type 1 Diabetes (SFDT1), we characterised glycaemic heterogeneity thanks to a set of complementary metrics: HbA<sub>1c</sub>, time in range (TIR), time below range (TBR), CV, Gold score and glycaemia risk index (GRI). Applying the Discriminative Dimensionality Reduction with Trees (DDRTree) algorithm, we created a phenotypic tree, i ...[more]