Project description:Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.
Project description:Full details of the development of a direct coupling of catharanthine with vindoline to provide vinblastine are described along with key mechanistic and labeling studies. Following an Fe(III)-promoted coupling reaction initiated by generation of a presumed catharanthine radical cation that undergoes a subsequent oxidative fragmentation and diastereoselective coupling with vindoline, addition of the resulting reaction mixture to an Fe(III)-NaBH(4)/air solution leads to oxidation of the C15'-C20' double bond and reduction of the intermediate iminium ion directly providing vinblastine (40-43%) and leurosidine (20-23%), its naturally occurring C20' alcohol isomer. The yield of coupled products, which exclusively possess the natural C16' stereochemistry, approaches or exceeds 80% and the combined yield of the isomeric C20' alcohols is >60%. Preliminary studies of Fe(III)-NaBH(4)/air oxidation reaction illustrate a generalizable trisubstituted olefin scope, identify alternatives to O(2) trap at the oxidized carbon, provide a unique entry into C20' functionalized vinblastines, and afford initial insights into the observed C20' diastereoselectivity. The first disclosure of the use of exo-catharanthine proceeding through Delta(19',20')-anhydrovinblastine in such coupling reactions is also detailed with identical stereochemical consequences. Incorporating either a catharanthine N-methyl group or a vindoline N-formyl group precludes Fe(III)-promoted coupling, whereas the removal of the potentially key C16 methoxy group of vindoline does not adversely impact the coupling efficiency. Extension of these studies provided a total synthesis of vincristine (2) via N-desmethylvinblastine (36, also a natural product), 16-desmethoxyvinblastine (44) and 4-desacetoxy-16-desmethoxyvinblastine (47) both of which we can now suggest are likely natural products produced by C. roseus, desacetylvinblastine (62) and 4-desacetoxyvinblastine (59), as well as a series of key analogues bearing systematic modifications in the vindoline subunit. Their biological evaluation provided additional insights into the key functionality within the vindoline subunit contributing to the activity and sets the foundation on which further, more deep-seated changes in the structures of 1 and 2 will be explored in future studies.
Project description:Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns.
Project description:Temperature and salinity effects on marine diatom species growth has been studied extensively; however, their effect on arsenic (As) biotransformation has been imprecise. This study reports the growth, and As biotransformation and speciation patterns at various temperatures and salinities of six marine diatom species: Asteroplanus karianus, Thalassionema nitzschioides, Nitzschia longissima, Skeletonema sp., Ditylum brightwellii, and Chaetoceros didymus. The growth rate and As biotransformation potentials of these species during three weeks of culture in f/2 based medium were significantly affected by wide temperature (0-35 °C) and salinity (0.3-50‰) ranges. Growth and As biotransformation were higher at optimum temperatures of 10-25 °C, and salinity of 10-35‰, whereas growth and arsenic biotransformation were lower at <5 °C and 5‰ and >25 °C and 35‰, respectively. The results showed that As(V) to As(III) biotransformation differed significantly (p < 0.05) between day 10 and 17. At optimum temperature and salinity levels, the cell size and As biotransformation were higher for all the species. A conceptual model on temperature and salinity effects on growth and As uptake and biotransformation mechanisms by these species has been proposed based on the findings of this study.
Project description:Resveratrol is considered as a potential food supplement, cosmetic ingredient and nutraceutical. In this study, resveratrol was produced by biotransformation successfully. In detail, a β-glucosidase producing strain was isolated and identified as Bacillus safensis, and it could convert polydatin to resveratrol efficiently and rapidly. Further research showed that the conversion rate to resveratrol reached 93.1% in 8 h at 37 °C. The production of resveratrol was confirmed by HPLC, LC-MS and 1H-NMR to identify its structure and it was verified to possess antibacterial properties especially against Escherchia coli. To illustrate the resveratrol transformation mechanism, several glucosidases from B. safensis CGMCC 13129 were expressed and analyzed. The results showed that BGL4 and BGL5 had higher transformation activity compared with other tested glucosidases. This research provides a novel approach to produce resveratrol, and would promote the application of resveratrol in health-promoting pharmaceutical and food products.
Project description:The use of fungicides to manage disease has led to multiple environmental externalities, including resistance development, pollution, and non-target mortality. Growers have limited options as legacy chemistry is withdrawn from the market. Moreover, fungicides are generally labeled for traditional soil-based production, and not for liquid culture systems. Biocontrol agents for disease management are a more sustainable and environmentally friendly alternative to conventional agroprotectants. Pythium ultimum is a soil borne oomycete plant pathogen with a broad taxonomic host range exceeding 300 plants. Cucumber seedlings exposed to P. ultimum 1 day after a protective inoculation with bacterial endophyte accession IALR1619 (Pseudomonas sp.) recorded 59% survival; with the control assessed at 18%. When the pathogen was added 5 days post endophyte inoculation, 74% of the seedlings treated survived, compared to 36% of the control, indicating a longer-term effect of IALR1619. Under hydroponic conditions, IALR1619 treated leaf type lettuce cv. 'Cristabel' and Romaine cv. 'Red Rosie' showed 29% and 42% higher shoot fresh weight compared to their controls, respectively. Similar results with less growth decline were observed for a repeat experiment with IALR1619. Additionally, an experiment on hydroponic lettuce in pots with perlite was carried out with a mixture of P. ultimum and P. dissotocum after IALR1619 inoculation. The endophyte treated 'Cristabel' showed fresh weight gain, but the second cultivar 'Pensacola' yielded no increase. In summary, the endophyte IALR1619 provided short term as well as medium-term protection against Pythium blight in cucumber seedlings and may be used as an alternative to conventional fungicides in a greenhouse setting. This study also demonstrated the potential of ALR1619 as a biocontrol agent against Pythium blight in hydroponic lettuce.
Project description:Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870.
Project description:The compatible solute mannosylglycerate (MG) has exceptional properties in terms of protein stabilization and protection under salt, heat, and freeze-drying stresses as well as against protein aggregation. Due to these characteristics, MG possesses large potential for clinical and biotechnological applications. To achieve efficient MG production, Corynebacterium glutamicum was equipped with a bifunctional MG synthase (encoded by mgsD and catalyzing the condensation of 3-phosphoglycerate and GDP-mannose to MG) from Dehalococcoides mccartyi. The resulting strain C. glutamicum (pEKEx3 mgsD) intracellularly accumulated about 111 mM MG (60 ± 9 mg gCDW -1) with 2% glucose as a carbon source. To enable efficient mannose metabolization, the native manA gene, encoding mannose 6-phosphate isomerase, was overexpressed. Combined overexpression of manA and mgsD from two plasmids in C. glutamicum resulted in intracellular MG accumulation of up to ca. 329 mM [corresponding to 177 mg g cell dry weight (CDW) -1] with glucose, 314 mM (168 mg gCDW -1) with glucose plus mannose, and 328 mM (176 mg gCDW -1) with mannose as carbon source(s), respectively. The product was successfully extracted from cells by using a cold water shock, resulting in up to 5.5 mM MG (1.48 g L-1) in supernatants. The two-plasmid system was improved by integrating the mgsD gene into the manA-bearing plasmid and the resulting strain showed comparable production but faster growth. Repeated cycles of growth/production and extraction of MG in a bacterial milking-like experiment showed that cells could be recycled, which led to a cumulative MG production of 19.9 mM (5.34 g L-1). The results show that the newly constructed C. glutamicum strain produces MG from glucose and mannose and that a cold water shock enables extraction of MG from the cytosol into the medium.
Project description:Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Project description:A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl₂) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.