Project description:Molecular signaling mechanisms underlying Alzheimer's disease (AD) remain unclear. Maintenance of memory and synaptic plasticity depend on de novo protein synthesis, dysregulation of which is implicated in AD. Recent studies showed AD-associated hyperphosphorylation of mRNA translation factor eukaryotic elongation factor 2 (eEF2), which results in inhibition of protein synthesis. We tested to determine whether suppression of eEF2 phosphorylation could improve protein synthesis capacity and AD-associated cognitive and synaptic impairments. Genetic reduction of the eEF2 kinase (eEF2K) in 2 AD mouse models suppressed AD-associated eEF2 hyperphosphorylation and improved memory deficits and hippocampal long-term potentiation (LTP) impairments without altering brain amyloid β (Aβ) pathology. Furthermore, eEF2K reduction alleviated AD-associated defects in dendritic spine morphology, postsynaptic density formation, de novo protein synthesis, and dendritic polyribosome assembly. Our results link eEF2K/eEF2 signaling dysregulation to AD pathophysiology and therefore offer a feasible therapeutic target.
Project description:The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.
Project description:Numerous studies have demonstrated that anesthetics' exposure to neonates imposes toxicity on the developing brain but the underlying mechanisms need to be further elucidated. Our present study aimed to explore the role of small conductance Ca2+-activated potassium channel type2 in memory and learning dysfunction caused by exposing neonates to sevoflurane. Postnatal day 7 Sprague-Dawley rats and hemagglutinin-tagged small conductance Ca2+-activated potassium channel type2 channel transfected COS-7 cells were exposed to sevoflurane and the trafficking of small conductance Ca2+-activated potassium channel type2 channels was analyzed; furthermore, memory and learning ability was analyzed by the Morris water maze test on postnatal day30-35 (juvenile period). Our results showed that sevoflurane exposure inhibited small conductance Ca2+-activated potassium channel type2 channel endocytosis in both hippocampi of postnatal day 7 rats and hemagglutinin-tagged small conductance Ca2+-activated potassium channel type2 channel transfected COS-7 cells and the memory and learning ability was impaired in the juvenile period after sevoflurane exposure to neonatal rats. Herein, our results demonstrated that exposing neonates to sevoflurane caused memory and learning impairment via dysregulating small conductance Ca2+-activated potassium channel type2 channels endocytosis.
Project description:BackgroundAcanthopanax senticosus (AS) is a medicinal and food plant with many physiological functions, especially nerve protection. Its extract has many functional components, including polysaccharides, flavonoids, saponins, and amino acids. Our previous study indicated that AS extract protected against nerve damage caused by radiation. However, little is known about the gut-brain axis mechanism of AS and its impact on radiation-induced learning and memory impairment.MethodIn 60 Co-γ ray-irradiated mice, we investigated the changes in behavior, neurotransmitters and gut microbiota after different days of administration of AS extract as a dietary supplement.ResultsThe AS extract improved learning and memory ability in mice, and the neurotransmitter levels in the hippocampus and colon started to change from the 7th day, which accompanied changes of the gut microbiota, a decreased abundance of Helicobacter on the 7th day and an increased abundance of Lactobacillus on the 28th day. Among the marker bacteria, Ruminococcus and Clostridiales were associated with 5-HT synthesis, and Streptococcus were associated with 5-HT and ACH synthesis. In addition, the AS extract increased the tight junction protein, inhibited inflammation levels in colon, and even increased the relative protein expression of BDNF and NF-κB and decreased the relative protein expression of IκBα in the hippocampus of irradiated mice.ConclusionThese results will lay the foundation for further study on the mechanism of the gut-brain axis of AS in preventing radiation-induced learning and memory impairment.
Project description:The normal aging process is commonly associated with mild cognitive deficits including memory decline. Previous studies indicate a role of dysregulated messenger ribonucleic acid translation capacity in cognitive defects associated with aging and aging-related diseases, including hyperphosphorylation of eukaryotic elongation factor 2 (eEF2). Phosphorylation of eEF2 by the kinase eEF2K inhibits its activity, hindering general protein synthesis. Here, we sought to determine whether cognitive deficits in aged mice can be improved by genetically deleting eEF2K (eEF2K KO) and consequently reduction of eEF2 phosphorylation. We found that suppression of eEF2K prevented aging-related deficits in novel object recognition memory. Interestingly, deletion of eEF2K did not alter overall protein synthesis in the hippocampus. Ultrastructural analysis revealed increase size and larger active zone lengths of postsynaptic densities in the hippocampus of aged eEF2K KO mice. Biochemical assays showed hippocampal eIF2α hyperphosphorylation in aged eEF2K KO mice, indicating inhibition of translation initiation. Our findings may provide insight into mechanistic understanding and thus development of novel therapeutic strategies for aging-related cognitive decline.
Project description:RationaleAdjuvant cancer chemotherapy can cause long-lasting, cognitive deficits. It is postulated that these impairments are due to these drugs targeting neural precursors within the adult hippocampus, the loss of which has been associated with memory impairment.ObjectivesThe present study investigates the effects of the chemotherapy, methotrexate (MTX) on spatial working memory and the proliferation and survival of the neural precursors involved in hippocampal neurogenesis, and the possible neuroprotective properties of the antidepressant fluoxetine.MethodsMale Lister hooded rats were administered MTX (75 mg/kg, two i.v. doses a week apart) followed by leucovorin rescue (i.p. 18 h after MTX at 6 mg/kg and at 26, 42 and 50 h at 3 mg/kg) and/or fluoxetine (10 mg/kg/day in drinking water for 40 days). Memory was tested using the novel location recognition (NLR) test. Using markers, cell proliferation (Ki67) and survival (bromodeoxyuridine/BrdU), in the dentate gyrus were quantified.ResultsMTX-treated rats showed a cognitive deficit in the NLR task compared with the vehicle and fluoxetine-treated groups. Cognitive ability was restored in the group receiving both MTX and fluoxetine. MTX reduced both the number of proliferating cells in the SGZ and their survival. This was prevented by the co-administration of fluoxetine, which alone increased cell numbers.ConclusionsThese results demonstrate that MTX induces an impairment in spatial working memory and has a negative long-term effect on hippocampal neurogenesis, which is counteracted by the co-administration of fluoxetine. If translatable to patients, this finding has the potential to prevent the chemotherapy-induced cognitive deficits experienced by many cancer survivors.
Project description:ObjectivesInhibition of calcium-/calmodulin- (CaM-) dependent kinase II (CaMKII) is correlated with epilepsy. However, the specific mechanism that underlies learning and memory impairment and neuronal death by CaMKII inhibition remains unclear.Materials and methodsIn this study, KN93, a CaMKII inhibitor, was used to investigate the role of CaMKII during epileptogenesis. We first identified differentially expressed genes (DEGs) in primary cultured hippocampal neurons with or without KN93 treatment using RNA-sequencing. Then, the impairment of learning and memory by KN93-induced CaMKII inhibition was assessed using the Morris water maze test. In addition, Western blotting, immunohistochemistry, and TUNEL staining were performed to determine neuronal death, apoptosis, and the relative signaling pathway.ResultsKN93-induced CaMKII inhibition decreased cAMP response element-binding (CREB) protein activity and impaired learning and memory in Wistar and tremor (TRM) rats, an animal model of genetic epilepsy. CaMKII inhibition also induced neuronal death and reactive astrocyte activation in both the Wistar and TRM hippocampi, deregulating mitogen-activated protein kinases. Meanwhile, neuronal death and neuron apoptosis were observed in PC12 and primary cultured hippocampal neurons after exposure to KN93, which was reversed by SP600125, an inhibitor of c-Jun N-terminal kinase (JNK).ConclusionsCaMKII inhibition caused learning and memory impairment and apoptosis, which might be related to dysregulated JNK signaling.
Project description:Protein translation is an essential but energetically expensive process, which is carefully regulated in accordance to the cellular nutritional and energy status. Eukaryotic elongation factor 2 (eEF2) is a central regulation point since it mediates ribosomal translocation and can be inhibited by phosphorylation at Thr56. TRPM7 is the unique fusion of an ion channel with a functional Ser/Thr-kinase. While TRPM7's channel function has been implicated in regulating vertebrate Mg(2+) uptake required for cell growth, the function of its kinase domain remains unclear. Here, we show that under conditions where cell growth is limited by Mg(2+) availability, TRPM7 via its kinase mediates enhanced Thr56 phosphorylation of eEF2. TRPM7-kinase does not appear to directly phosphorylate eEF2, but rather to influence the amount of eEF2's cognate kinase eEF2-k, involving its phosphorylation at Ser77. These findings suggest that TRPM7's structural duality ensures ideal positioning of its kinase in close proximity to channel-mediated Mg(2+) uptake, allowing for the adjustment of protein translational rates to the availability of Mg(2+).
Project description:The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.