Project description:Familial hypertrophic cardiomyopathy (HCM) is largely caused by dominant mutations in genes encoding cardiac sarcomeric proteins, and it is etiologically distinct from secondary cardiomyopathies resulting from pressure/volume overload and neurohormonal or inflammatory stimuli. Here, we demonstrate that decreased left ventricular contractile function in male, but not female, HCM mice is associated with reduced fatty acid translocase (CD36) and AMP-activated protein kinase (AMPK) activity. As a result, the levels of myocardial ATP and triglyceride (TG) content are reduced, while the levels of oleic acid and TG in circulating very low density lipoproteins (VLDLs) and liver are increased. With time, these metabolic changes culminate in enhanced glucose production in male HCM mice. Remarkably, restoration of ventricular TG and ATP deficits via AMPK agonism as well as inhibition of gluconeogenesis improves ventricular architecture and function. These data underscore the importance of the systemic effects of a primary genetic heart disease to other organs and provide insight into potentially novel therapeutic interventions for HCM.
Project description:Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21's effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP-activated protein kinase and the expression of hexokinase II and peroxisome proliferator-activated receptor gamma co-activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion-aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2-driven CD36 up-regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM.
Project description:The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. On one hand, hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. On the other hand, an upstreaming acute interleukin-6 (IL6) / signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte IL6 receptor (IL6R) deficiency and STAT3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL6/STAT3/MR/FGF21 signaling axis that mediates heart-liver crosstalk during MI. Targeting the signaling axis and the crosstalk may provide novel strategies to treat MI and heart failure.
Project description:BackgroundPeriostin is an extracellular matrix protein that plays a critical role in cell fate determination and tissue remodeling, but the underlying role and mechanism of periostin in diabetic cardiomyopathy (DCM) are far from clear. Thus, we aimed to clarify the mechanistic participation of periostin in DCM.MethodsThe expression of periostin was examined in DCM patients, diabetic mice and high glucose (HG)-exposed cardiac fibroblasts (CF). Gain- and loss-of-function experiments assessed the potential role of periostin in DCM pathogenesis. RNA sequencing was used to investigate the underlying mechanisms of periostin in DCM.ResultsA mouse cytokine antibody array showed that the protein expression of periostin was most significantly upregulated in diabetic mouse heart, and this increase was also observed in patients with DCM or HG-incubated CF. Periostin-deficient mice were protected from diabetes-induced cardiac dysfunction and myocardial damage, while overexpression of periostin held the opposite effects. Hyperglycemia stimulated the expression of periostin in a TGF-β/Smad-dependent manner. RNA sequencing results showed that periostin upregulated the expression of nucleosome assembly protein 1-like 2 (NAP1L2) which recruited SIRT3 to deacetylate H3K27ac on the promoters of the branched-chain amino acid (BCAA) catabolism-related enzymes BCAT2 and PP2Cm, resulting in BCAA catabolism impairment. Additionally, CF-derived periostin induced hypertrophy, oxidative injury and inflammation in primary cardiomyocytes. Finally, we identified that glucosyringic acid (GA) specifically targeted and inhibited periostin to ameliorate DCM.ConclusionOverall, manipulating periostin expression may function as a promising strategy in the treatment of DCM.
Project description:BackgroundHydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure.MethodsHuman myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency.ResultsMyocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction.ConclusionsOur data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.
Project description:In this study, we integrated transcriptomic and metabolomic analyses to achieve a comprehensive understanding of the underlying mechanisms of diabetic cardiomyopathy (DCM) in a diabetic rat model. Functional and molecular characterizations revealed significant cardiac injury, dysfunction, and ventricular remodeling in DCM. A thorough analysis of global changes in genes and metabolites showed that amino acid metabolism, especially the breakdown of branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine, is highly dysregulated. Furthermore, the study identified the transcription factor Gata3 as a predicted negative regulator of the gene encoding the key enzyme for BCAA degradation. These findings suggest that the disruption of BCAA degradation is a critical characteristic of diabetic myocardial damage and indicate a potential role for Gata3 in the dysregulation of BCAA metabolism in the context of DCM.
Project description:Recent evidence indicates that a high-fat diet can promote tumor development, especially colorectal cancer, by influencing the microbiota. Regulatory circular RNA (circRNA) plays an important role in modulating host-microbe interactions; however, the specific mechanisms by which circRNAs influence cancer progression by regulating these interactions remain unclear. Here, we report that consumption of a high-fat diet modulates the microbiota by specifically upregulating the expression of the noncoding RNA hsa_circ_0126925 (herein, referred to as circ_0126925) in colorectal cancer. Acting as a scaffold, circ_0126925 hinders the recruitment of the E3 ubiquitin ligase tripartite motif-containing protein 21 (TRIM21) to branched-chain amino acid transaminase 2 (BCAT2), leading to reduced degradation of BCAT2. This reduction in targeted degradation of BCAT2 can protect tumors from limited branched-chain amino acid (BCAA) interference by improving the metabolism of BCAAs in colorectal cancer. Taken together, these data demonstrate that circ_0126925 plays a critical role in promoting the progression of colorectal cancer by maintaining BCAA metabolism and provide insight into the functions and crosstalk of circ_0126925 in host-microbe interactions in colorectal cancer. Implications: This study preliminarily confirms that circRNAs do indeed respond to microbiota/microbial metabolites, providing further evidence for the potential development of circRNAs as diagnostic tools and/or therapeutic agents to alleviate microbiome-related pathology in humans.
Project description:Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Project description:The hormone FGF21 regulates carbohydrate and lipid homeostasis as well as body weight, and increasing FGF21 improves metabolic abnormalities associated with obesity and diabetes. FGF21 is thought to act on its target tissues, including liver and adipose tissue, to improve insulin sensitivity and reduce adiposity. Here, we used mice with selective hepatic inactivation of the IR (LIRKO) to determine whether insulin sensitization in liver mediates FGF21 metabolic actions. Remarkably, hyperglycemia was completely normalized following FGF21 treatment in LIRKO mice, even though FGF21 did not reduce gluconeogenesis in these animals. Improvements in blood sugar were due in part to increased glucose uptake in brown fat, browning of white fat, and overall increased energy expenditure. These effects were preserved even after removal of the main interscapular brown fat pad. In contrast to its retained effects on reducing glucose levels, the effects of FGF21 on reducing circulating cholesterol and hepatic triglycerides and regulating the expression of key genes involved in cholesterol and lipid metabolism in liver were disrupted in LIRKO mice. Thus, FGF21 corrects hyperglycemia in diabetic mice independently of insulin action in the liver by increasing energy metabolism via activation of brown fat and browning of white fat, but intact liver insulin action is required for FGF21 to control hepatic lipid metabolism.
Project description:The Hedgehog signaling pathway regulates many processes during embryogenesis and the homeostasis of adult organs. Recent data suggest that central metabolic processes and signaling cascades in the liver are controlled by the Hedgehog pathway and that changes in hepatic Hedgehog activity also affect peripheral tissues, such as the reproductive organs in females. Here, we show that hepatocyte-specific deletion of the Hedgehog pathway is associated with the dramatic expansion of adipose tissue in mice, the overall phenotype of which does not correspond to the classical outcome of insulin resistance-associated diabetes type 2 obesity. Rather, we show that alterations in the Hedgehog signaling pathway in the liver lead to a metabolic phenotype that is resembling metabolically healthy obesity. Mechanistically, we identified an indirect influence on the hepatic secretion of the fibroblast growth factor 21, which is regulated by a series of signaling cascades that are directly transcriptionally linked to the activity of the Hedgehog transcription factor GLI1. The results of this study impressively show that the metabolic balance of the entire organism is maintained via the activity of morphogenic signaling pathways, such as the Hedgehog cascade. Obviously, several pathways are orchestrated to facilitate liver metabolic status to peripheral organs, such as adipose tissue.