Unknown

Dataset Information

0

Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation.


ABSTRACT: Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.

SUBMITTER: Shapturenka P 

PROVIDER: S-EPMC11353058 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation.

Shapturenka Pavel P   Barnes Benjamin K BK   Mansfield Elisabeth E   Noor Matthew M MM   Fagan Jeffrey A JA  

RSC advances 20240828 35


Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate p  ...[more]

Similar Datasets

| S-EPMC4310641 | biostudies-literature
| S-EPMC9419701 | biostudies-literature
| S-EPMC10254723 | biostudies-literature
| S-EPMC9419523 | biostudies-literature
| S-EPMC7073224 | biostudies-literature
| S-EPMC9473271 | biostudies-literature
| S-EPMC9417105 | biostudies-literature
| S-EPMC11533215 | biostudies-literature
| S-EPMC6941444 | biostudies-literature
| S-EPMC7762177 | biostudies-literature