Project description:NEU1 sialidase hydrolyzes sialic acids from glycoconjugates in lysosomes. Deficiency of NEU1 causes sialidosis with symptoms including facial dysmorphism, bone dysplasia, and neurodegeneration. However, the effects of NEU1 deficiency on emotional activity have not been explored. Here, we conducted the behavioral analysis using Neu1-knockout zebrafish (Neu1-KO). Neu1-KO zebrafish showed normal swimming similar to wild-type zebrafish (WT), whereas shoaling was decreased and accompanied by greater inter-fish distance than WT zebrafish. The aggression test showed a reduced aggressive behavior in Neu1-KO zebrafish than in WT zebrafish. In the mirror and 3-chambers test, Neu1-KO zebrafish showed more interest toward the opponent in the mirror and multiple unfamiliar zebrafish, respectively, than WT zebrafish. Furthermore, Neu1-KO zebrafish also showed increased interaction with different fish species, whereas WT zebrafish avoided them. In the black-white preference test, Neu1-KO zebrafish showed an abnormal preference for the white region, whereas WT zebrafish preferred the black region. Neu1-KO zebrafish were characterized by a downregulation of the anxiety-related genes of the hypothalamic-pituitary-adrenal axis and upregulation of lamp1a, an activator of lysosomal exocytosis, with their brains accumulating several sphingoglycolipids. This study revealed that Neu1 deficiency caused abnormal emotional behavior in zebrafish, possibly due to neuronal dysfunction induced by lysosomal exocytosis.
Project description:Social exclusion is an influential concept in politics, mental health and social psychology. Studies on healthy subjects have implicated the medial prefrontal cortex (mPFC), a region involved in emotional and social information processing, in neural responses to social exclusion. Impairments in social interactions are common in schizophrenia and are associated with reduced quality of life. Core symptoms such as delusions usually have a social content. However little is known about the neural underpinnings of social abnormalities. The aim of this study was to investigate the neural substrates of social exclusion in schizophrenia. Patients with schizophrenia and healthy controls underwent fMRI while participating in a popular social exclusion paradigm. This task involves passing a 'ball' between the participant and two cartoon representations of other subjects. The extent of social exclusion (ball not being passed to the participant) was parametrically varied throughout the task. Replicating previous findings, increasing social exclusion activated the mPFC in controls. In contrast, patients with schizophrenia failed to modulate mPFC responses with increasing exclusion. Furthermore, the blunted response to exclusion correlated with increased severity of positive symptoms. These data support the hypothesis that the neural response to social exclusion differs in schizophrenia, highlighting the mPFC as a potential substrate of impaired social interactions.
Project description:In this study, we investigated locomotor activity and responses to repeated light and dark stimuli to assess cannabinoid-induced abnormal behavior in zebrafish larvae (Danio rerio), as an alternative to standard rodent models. To induce the desired responses, we used cannabidiol and WIN55,212-2, two major cannabinoid components. A repeated light and dark test was used to assess how drug exposure influences locomotory responses. Larvae were examined after moderate cannabidiol and WIN55,212-2 exposure and at 24 h after transfer to untreated water. We found that cannabidiol did not produce a dose-dependent inhibitory effect on locomotor activity, with both 0.5 and 10 μg/mL concentrations reducing movement velocity and the total distance moved. However, 10 μg/mL cannabidiol was observed to attenuate the responses of larvae exposed to darkness. No differences were detected between the control and cannabidiol-treated groups after 24 h in fresh water. Fish treated with WIN55,212-2 at 0.5 and 1 μg/mL showed virtually no activity, even in darkness, whereas a concentration of 10 μg/mL induced mortality. A 24-h period in fresh water had the effect of reversing most of the drug-induced immobilization, even in the WIN55,212-2-treated groups. Larvae were also evaluated for their responses to cannabidiol subsequent to an initial exposure to WIN55,212-2, and it was accordingly found that treatment with cannabidiol could attenuate WIN55,212-2-induced abnormal immobilization, whereas equivalent doses of cannabidiol and WIN55,212-2 produced a mixed response. In conclusion, the behavioral effects of the two cannabinoids cannabidiol and WIN55,212-2 appear to be ratio dependent. Furthermore, the repeated light and dark test could serve as a suitable method for assaying drug-induced behavior.
Project description:OBJECTIVE:To better understand the origins of working memory (WM) impairment in schizophrenia we investigated cortical oscillatory activity in people with schizophrenia (PSZ) while they performed a WM task requiring encoding, maintenance, and retrieval/manipulation processes of spatial information. METHODS:We examined time-frequency synchronous energy of cortical source signals that were derived from magnetoencephalography (MEG) localized to cortical regions using WM-related hemodynamic responses and individualized structural head-models. RESULTS:Compared to thirteen healthy controls (HC), twelve PSZ showed performance deficits regardless of WM-load or duration. During encoding, PSZ had early theta and delta event-related synchrony (ERS) deficits in prefrontal and visual cortices which worsened with greater memory load and predicted WM performance. During prolonged maintenance of material, PSZ showed deficient beta event-related desynchrony (ERD) in dorsolateral prefrontal, posterior parietal, and visual cortices. In retrieval, PSZ showed reduced delta/theta ERS in the anterior prefrontal and ventral visual cortices and diminished gamma ERS in the premotor and posterior parietal cortices. CONCLUSIONS:Although beta/gamma cortical neural oscillatory deficits for maintenance/retrieval are evident during WM, the abnormal prefrontal theta-frequency ERS for encoding is most predictive of poor WM in schizophrenia. SIGNIFICANCE:Time-frequency-spatial analysis identified process- and frequency-specific neural synchrony abnormalities underlying WM deficits in schizophrenia.
Project description:Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2(ex4/5) splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2(ex4/5) morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ?6-8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2(ex4/5) morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates.
Project description:Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.
Project description:Dopamine transporter (SLC6A3) deficiency causes infantile Parkinson disease, for which there is no effective therapy. We have explored the effects of genetically deleting SLC6A3 in zebrafish. Unlike the wild-type, slc6a3-/- fish hover near the tank bottom, with a repetitive digging-like behavior. slc6a3-/- fish manifest pruning and cellular loss of particular tyrosine hydroxylase-immunoreactive neurons in the midbrain. Clozapine, an effective therapeutic for treatment-resistant schizophrenia, rescues the abnormal behavior of slc6a3-/- fish. Clozapine also reverses the abnormalities in the A8 region of the mutant midbrain. By RNA sequencing analysis, clozapine increases the expression of erythropoietin pathway genes. Transgenic over-expression of erythropoietin in neurons of slc6a3-/- fish partially rescues the mutant behavior, suggesting a potential mechanistic basis for clozapine's efficacy.
Project description:As part of characterizing the novel pogz deficiency mouse model, we performed RNA-Seq from cerebellum and hippocampus of adult mice to discover Pogz targets and changes in gene expression that might explain the phenotypes we see in those mice
Project description:Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia (N = 15), their non-manifesting siblings (N = 14) and healthy controls (N = 15) listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC) approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings - high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale) revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.
Project description:BACKGROUND Schizophrenia is a multigene disease with a complex etiology and different clinical manifestations. It is of great significance to understand the etiology and pathogenesis of schizophrenia patients from different clinical dimensions and to interpret the potential molecular changes of schizophrenia patients from different clinical dimensions. MATERIAL AND METHODS RNA-Seq was performed on peripheral blood leukocytes of 50 patients with schizophrenia and 50 healthy controls. Phenotypic information of patients with schizophrenia was collected during blood sampling. Differentially expressed genes (DEGs) were screened by the edgeR package of R software. To better analyze the correlation between DEG expression values, explore the potential association between differential genes and clinical dimensions of schizophrenia, and identify hub genes, we constructed a DEG co-expression network using weighted gene co-expression network analysis (WGCNA). RESULTS We provide the transcription profiles of peripheral blood leukocytes in patients with schizophrenia and found a gene module (including 89 genes) closely related to the clinical dimension of abnormal psychomotor behavior in schizophrenia. CONCLUSIONS The findings enhance our understanding of the biological processes of schizophrenia, enabling us to identify specific clinical dimensions of genes for diagnosis and prognostic markers and possibly for targeted therapy.