Project description:Human mastadenovirus species C (HAdV-C) are the most common etiologic agents of respiratory disease in young children and are frequently detected worldwide including China. Two recombinant HAdV-C strains (BJ04 and BJ09) were isolated from infants with acute respiratory infection (ARI) in Beijing in 2012-2013. The whole genome sequences (WGS) of BJ04 and BJ09 were generated and compared to other 35 HAdV-C WGSs publicly available. Phylogenetic analyses showed that the BJ04 strain might be the result of three homologous recombination events involving the parental strains JX173086 (HAdV-1), NC_001405 (HAdV-2) and LC068718 (HAdV-6), whereas BJ09 viral genome might be made of genetic elements from JX173083 (HAdV-1), KF268199 (HAdV-5), and KR699642 (strain CBJ113). Despite intratypic recombination, amino acid analysis showed that the gene repertoire of BJ04 and BJ09 were similar to type 2 viruses. Finally, this analysis revealed that at least three lineages of HAdV-C have been identified in China, represented by BJ04 related to NC_001405, BJ09 related to CBJ113, and KF951595 (strain DD28) related to virus isolated in Japan. This study showed that the frequent recombination played an important driving force for complexity of the HAdV-C epidemic in Beijing, thereby demonstrating the necessity for epidemiological and virological surveillance for HAdV-C in China.
Project description:Post-Infective Bowel Dysfunction following Campylobacter enteritis is characterised by reduced microbiota diversity and impaired microbiota recovery
Project description:Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control-suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions-a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Project description:Studies in epitranscriptomics indicates that RNA is modified by a variety of enzymes. Among these RNA modifications, A-to-I RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA-seq data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNAEditor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affects the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncover that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands are examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, HuR, was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme ADAR compared to the control—suggesting that the presence of RNA editing islands influences HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions—a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Project description:Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf'janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and cis/trans-vacant 1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles.
Project description:BackgroundSerum profiling using mass spectrometry-based proteomic techniques has great potential to detect biomarkers that might improve the management for advanced breast cancer patients. The albuminome has previously been investigated as a tool in biomarker discovery, however other high abundant blood proteins are also likely to sequester potentially interesting molecules.MethodsAffinity resin purified and isolated Transferrin and associated bound proteins from normal control and breast cancer patient serum samples were analysed by label-free mass spectrometry during the discovery phase.Results21 significant proteins were identified with Fibrinogen and Fibronectin selected for further analysis in an independent sample set, with significant difference found when comparing the controls groups (normal healthy control, inflammatory bowel disease and benign breast disease) to stage IV breast cancer.ConclusionsThe area under the curve value for Fibrinogen compared favourably with cancer antigen 15-3, an established breast cancer tumour marker. A combination of all three biomarkers improved accuracy when comparing control/benign to stage IV breast cancer patient groups.General significanceMass spectrometry profiling of Transferrin-bound proteins has revealed serum proteins that can distinguish between serum from advanced breast cancer patients and healthy control subjects with high confidence.
Project description:BackgroundWith increasing numbers of crystal structures of proteinratioDNA and proteinratioproteinratioDNA complexes publically available, it is now possible to extract sufficient structural, physical-chemical and thermodynamic parameters to make general observations and predictions about their interactions. In particular, the properties of macromolecular assemblies of multiple proteins bound to DNA have not previously been investigated in detail.Methodology/principal findingsWe have performed computational structural analyses on macromolecular assemblies of multiple proteins bound to DNA using a variety of different computational tools: PISA; PROMOTIF; X3DNA; ReadOut; DDNA and DCOMPLEX. Additionally, we have developed and employed an algorithm for approximate collision detection and overlapping volume estimation of two macromolecules. An implementation of this algorithm is available at http://promoterplot.fmi.ch/Collision1/. The results obtained are compared with structural, physical-chemical and thermodynamic parameters from proteinratioprotein and single proteinratioDNA complexes. Many of interface properties of multiple proteinratioDNA complexes were found to be very similar to those observed in binary proteinratioDNA and proteinratioprotein complexes. However, the conformational change of the DNA upon protein binding is significantly higher when multiple proteins bind to it than is observed when single proteins bind. The water mediated contacts are less important (found in less quantity) between the interfaces of components in ternary (proteinratioproteinratioDNA) complexes than in those of binary complexes (proteinratioprotein and proteinratioDNA).The thermodynamic stability of ternary complexes is also higher than in the binary interactions. Greater specificity and affinity of multiple proteins binding to DNA in comparison with binary protein-DNA interactions were observed. However, protein-protein binding affinities are stronger in complexes without the presence of DNA.Conclusions/significanceOur results indicate that the interface properties: interface area; number of interface residues/atoms and hydrogen bonds; and the distribution of interface residues, hydrogen bonds, van der Walls contacts and secondary structure motifs are independent of whether or not a protein is in a binary or ternary complex with DNA. However, changes in the shape of the DNA reduce the off-rate of the proteins which greatly enhances the stability and specificity of ternary complexes compared to binary ones.
Project description:Despite the growing body of evidence demonstrating that proteins can survive for thousands to even millions of years in selected contexts, there are relatively few examples of the successful recovery and identification of archaeological protein residues from ceramic artifacts. Claims of positive results are sometimes contentious and frequently challenged. One source of confusion in the debate is a general lack of consideration for the taphonomic histories of ceramic-bound proteins. To gain insight into this issue, we conducted an integrated, mass-spectrometry-based study examining ceramic-bound protein that was experimentally aged over the course of 12 months. By documenting the degradation of proteins after 1, 6 and 12 months of aging, we were able to provide insight into our lack of meaningful results obtained from a selection of archaeological ceramics.
Project description:Target specific short single-stranded DNA (ssDNA) molecules, called aptamers, are auspicious ligands for numerous in vivo applications. However, aptamers are synthetic molecules, which might be recognized by the immune cells in vivo and induce an activation of the innate immune system. Thus, immune activation potential of synthetic ssDNA oligonucleotides (ODNs) was determined using a well established closed-loop circulation model. Fresh human blood was incubated at 37°C for 2 or 4 hours with ssDNA ODNs (SB_ODN) or CpG ODN as positive control. Transcriptional changes were determined by microarray analyses. Blood samples containing SB_ODN demonstrated after 4 hours a significant regulation of 295 transcripts. Amongst others, CCL8, CXCL10, CCL7 and CXCL11 were highest regulated genes. Gene Ontology terms and KEGG pathway analyses exhibited that the differentially expressed genes belong to the transcripts that are regulated during an immune and inflammatory response, and were overrepresented in TLR signaling pathway. This study shows for the first time the potential of aptamers to activate immune system after systemic application into the human blood. Thus, we highly recommend performing of these preclinical tests with potential aptamer-based therapeutics. To evaluate the influence of synthetic ssDNA oligonucleotides (SB_ODN, CpG_ODN) on the cells of circulating peripheral blood (n=3), the samples were divided into 7 groups, 0h_without ssDNA, 2h_without ssDNA, 2h_with SB_ODN, 2h_with CpG_ODN, 4h_without ssDNA, 4h_with SB_ODN, 4h_with CpG_ODN. Baseline value samples (0h_without ssDNA) were obtained after blood collection without rotating in the closed-loop model. Negative control samples (2h_without ssDNA and 4h_without ssDNA) did not include oligonucleotides but rotated in the closed-loop model.
Project description:Aptamers are single-stranded nucleic acids that fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. Aptamers are generated by an iterative process known as in vitro selection, which permits their isolation from pools of random sequences. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers (e.g., polyelectrolyte effect). Histones, eukaryotic proteins that make up the core structure of nucleosomes are attractive targets for exploring the binding properties of aptamers because these proteins have positively charged surfaces that bind DNA through noncovalent sequence-independent interactions. Previous selections by our lab and others have yielded DNA aptamers with high affinity but low specificity to individual histone proteins. Whether this is a general limitation of aptamers is an interesting question with important practical implications in the future development of protein affinity reagents. Here we report the in vitro selection of a DNA aptamer that binds to histone H4 with a K(d) of 13 nM and distinguishes other core histone proteins with 100 to 480-fold selectivity, which corresponds to a ΔΔG of up to 3.4 kcal mol(-1) . This result extends our fundamental understanding of aptamers and their ability to fold into shapes that selectively bind alkaline proteins.