Project description:UnlabelledIn patients with idiopathic pulmonary arterial hypertension (iPAH), iron deficiency is common and has been associated with reduced exercise capacity and worse survival. Previous studies have shown beneficial effects of intravenous iron administration. In this study, we investigated the use of intravenous iron therapy in iron-deficient iPAH patients in terms of safety and effects on exercise capacity, and we studied whether altered exercise capacity resulted from changes in right ventricular (RV) function and skeletal muscle oxygen handling. Fifteen patients with iPAH and iron deficiency were included. Patients underwent a 6-minute walk test, cardiopulmonary exercise tests, cardiac magnetic resonance imaging, and a quadriceps muscle biopsy and completed a quality-of-life questionnaire before and 12 weeks after receiving a high dose of intravenous iron. The primary end point, 6-minute walk distance, was not significantly changed after 12 weeks (409 ± 110 m before vs. 428 ± 94 m after; P = 0.07). Secondary end points showed that intravenous iron administration was well tolerated and increased body iron stores in all patients. In addition, exercise endurance time (P < 0.001) and aerobic capacity (P < 0.001) increased significantly after iron therapy. This coincided with improved oxygen handling in quadriceps muscle cells, although cardiac function at rest and maximal [Formula: see text] were unchanged. Furthermore, iron treatment was associated with improved quality of life (P < 0.05). In conclusion, intravenous iron therapy in iron-deficient iPAH patients improves exercise endurance capacity. This could not be explained by improved RV function; however, increased quadriceps muscle oxygen handling may play a role. (Trial registrationClinicalTrials.gov identifier NCT01288651).
Project description:Rationale: Iron deficiency, in the absence of anemia, is common in patients with idiopathic and heritable pulmonary arterial hypertension (PAH) and is associated with a worse clinical outcome. Oral iron absorption may be impeded by elevated circulating hepcidin concentrations. The safety and benefit of parenteral iron replacement in this patient population is unclear. Objectives: To evaluate the safety and efficacy of parenteral iron replacement in PAH. Methods: In two randomized, double-blind, placebo-controlled 12-week crossover studies, 39 patients in Europe received a single infusion of ferric carboxymaltose (Ferinject) (1,000 mg or 15 mg/kg if weight <66.7 kg) or saline as placebo, and 17 patients in China received iron dextran (Cosmofer) (20 mg iron/kg body weight) or saline placebo. All patients had idiopathic or heritable PAH and iron deficiency at entry as defined by a serum ferritin <37 μg/L or iron <10.3 μmol/L or transferrin saturations <16.4%. Results: Both iron treatments were well tolerated and improved iron status. Analyzed separately and combined, there was no effect on any measure of exercise capacity (using cardiopulmonary exercise testing or 6-minute walk test) or cardiopulmonary hemodynamics, as assessed by right heart catheterization, cardiac magnetic resonance, or plasma NT-proBNP (N-terminal-pro hormone brain natriuretic peptide) at 12 weeks. Conclusions: Iron repletion by administration of a slow-release iron preparation as a single infusion to patients with PAH with iron deficiency without overt anemia was well tolerated but provided no significant clinical benefit at 12 weeks. Clinical trial registered with ClinicalTrials.gov (NCT01447628).
Project description:Our aim is to assess the safety and potential clinical benefit of intravenous iron (Ferinject) infusion in iron deficient patients with idiopathic pulmonary arterial hypertension (IPAH). Iron deficiency in the absence of anemia (1) is common in patients with IPAH; (2) is associated with inappropriately raised levels of hepcidin, the key regulator of iron homeostasis; and (3) correlates with disease severity and worse clinical outcomes. Oral iron absorption may be impeded by reduced absorption due to elevated hepcidin levels. The safety and benefits of parenteral iron replacement in IPAH are unknown. Supplementation of Iron in Pulmonary Hypertension (SIPHON) is a Phase II, multicenter, double-blind, randomized, placebo-controlled, crossover clinical trial of iron in IPAH. At least 60 patients will be randomized to intravenous ferric carboxymaltose (Ferinject) or saline placebo with a crossover point after 12 weeks of treatment. The primary outcome will be the change in resting pulmonary vascular resistance from baseline at 12 weeks, measured by cardiac catheterization. Secondary measures include resting and exercise hemodynamics and exercise performance from serial bicycle incremental and endurance cardiopulmonary exercise tests. Other secondary measurements include serum iron indices, 6-Minute Walk Distance, WHO functional class, quality of life score, N-terminal pro-brain natriuretic peptide (NT-proBNP), and cardiac anatomy and function from cardiac magnetic resonance. We propose that intravenous iron replacement will improve hemodynamics and clinical outcomes in IPAH. If the data supports a potentially useful therapeutic effect and suggest this drug is safe, the study will be used to power a Phase III study to address efficacy.
Project description:In left heart failure, iron supplementation (IS) is a first-line treatment option, regardless of anemia. Pulmonary arterial hypertension (PAH), a rare disease leading to right heart failure, is also associated with iron deficiency. While it is a much debated topic, recent evidence demonstrate that restoration of iron stores results in improved right ventricular function and exercise tolerance. Hence, IS may also be considered as an option in the treatment of PAH.
Project description:BackgroundAge and preoperative anaemia are risk factors for poor surgical outcome and blood transfusion. The aim of this study was to examine the effect of iron supplementation in iron-deficient (ID) elderly patients undergoing major surgery.MethodIn this single-centre observational study, patients ≥ 65 years undergoing major surgery were screened for anaemia and ID. Patients were assigned to the following groups: A- (no anaemia); A-,ID+,T+ (no anaemia, iron-deficient, intravenous iron supplementation); A+ (anaemia); and A+,ID+,T+ (anaemia, iron-deficient, intravenous iron supplementation).ResultsOf 4,381 patients screened at the anaemia walk-in clinic, 2,381 (54%) patients were ≥ 65 years old and 2,191 cases were included in analysis. The ID prevalence was 63% in patients with haemoglobin (Hb) < 8 g/dl, 47.2% in patients with Hb from 8.0 to 8.9 g/dl, and 44.3% in patients with Hb from 9 to 9.9 g/dl. In severely anaemic patients, an Hb increase of 0.6 (0.4; 1.2) and 1.2 (0.7; 1.6) g/dl was detected with iron supplementation 6-10 and > 10 days before surgery, respectively. Hb increased by 0 (-0.1; 0) g/dl with iron supplementation 1-5 days before surgery, 0.2 (-0.1; 0.5) g/dl with iron supplementation 6-10 days before surgery, and 0.2 (-0.2; 1.1) g/dl with supplementation > 10 days before surgery (p < 0.001 for 1-5 vs. 6-10 days). Overall, 58% of A+,ID+,T+ patients showed an Hb increase of > 0.5 g/dl. The number of transfused red blood cell units was significantly lower in patients supplemented with iron (0 (0; 3)) compared to non-treated anaemic patients (1 (0; 4)) (p = 0.03). Patients with iron supplementation > 6 days before surgery achieved mobility 2 days earlier than patients with iron supplementation < 6 days.ConclusionsIntravenous iron supplementation increases Hb level and thereby reduces blood transfusion rate in elderly surgical patients with ID anaemia.
Project description:Anaemia is a highly prevalent condition, which negatively impacts on patients' cardiovascular performance and quality of life. Anaemia is mainly caused by disturbances of iron homeostasis. While absolute iron deficiency mostly as a consequence of chronic blood loss or insufficient dietary iron absorption results in the emergence of iron deficiency anaemia, inflammation-driven iron retention in innate immune cells and blockade of iron absorption leads to the development of anaemia of chronic disease. Both, iron deficiency and anaemia have been linked to the clinical course of pulmonary hypertension. Various mechanistic links between iron homeostasis, anaemia, and pulmonary hypertension have been described and current treatment guidelines suggest regular iron status assessment and the implementation of iron supplementation strategies in these patients. The pathophysiology, diagnostic assessment as well as current and future treatment options concerning iron deficiency with or without anaemia in individuals suffering from pulmonary hypertension are discussed within this review.
Project description:BACKGROUND:Increased iron availability modifies cardiorespiratory function in healthy volunteers and improves exercise capacity and quality of life in patients with heart failure or pulmonary hypertension. We hypothesised that intravenous iron would produce improvements in oxygenation, exercise capacity and quality of life in patients with chronic obstructive pulmonary disease (COPD). METHODS:We performed a randomised, placebo-controlled, double-blind trial in 48 participants with COPD (mean±SD: age 69±8 years, haemoglobin 144.8±13.2?g/L, ferritin 97.1±70.0?µg/L, transferrin saturation 31.3%±15.2%; GOLD grades II-IV), each of whom received a single dose of intravenous ferric carboxymaltose (FCM; 15?mg/kg bodyweight) or saline placebo. The primary endpoint was peripheral oxygen saturation (SpO2) at rest after 1?week. The secondary endpoints included daily SpO2, overnight SpO2, exercise SpO2, 6?min walk distance, symptom and quality of life scores, serum iron indices, spirometry, echocardiographic measures, and exacerbation frequency. RESULTS:SpO2 was unchanged 1?week after FCM administration (difference between groups 0.8%, 95%?CI -0.2% to 1.7%). However, in secondary analyses, exercise capacity increased significantly after FCM administration, compared with placebo, with a mean difference in 6?min walk distance of 12.6?m (95%?CI 1.6 to 23.5?m). Improvements of ?40?m were observed in 29.2% of iron-treated and 0% of placebo-treated participants after 1?week (p=0.009). Modified MRC Dyspnoea Scale score was also significantly lower after FCM, and fewer participants reported scores ?2 in the FCM group, compared with placebo (33.3% vs 66.7%, p=0.02). No significant differences were observed in other secondary endpoints. Adverse event rates were similar between groups, except for hypophosphataemia, which occurred more frequently after FCM (91.7% vs 8.3%, p<0.001). CONCLUSIONS:FCM did not improve oxygenation over 8 weeks in patients with COPD. However, this treatment was well tolerated and produced improvements in exercise capacity and functional limitation caused by breathlessness. These effects on secondary endpoints require confirmation in future studies. TRIAL REGISTRATION NUMBER:ISRCTN09143837.
Project description:Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Project description:Background & objectivesIntravenous iron supplementation is widespread in the hemodialysis population, but there is uncertainty about the safest dosing strategy. We compared the safety of different intravenous iron dosing practices on the risk of adverse cardiovascular outcomes in a large population of hemodialysis patients.Design settings participants & measurementsA retrospective cohort was created from the clinical database of a large dialysis provider (years 2004-2008) merged with administrative data from the United States Renal Data System. Dosing comparisons were (1) bolus (consecutive doses ? 100 mg exceeding 600 mg during one month) versus maintenance (all other iron doses during the month); and (2) high (> 200 mg over 1 month) versus low dose (? 200 mg over 1 month). We established a 6-month baseline period (to identify potential confounders and effect modifiers), a one-month iron exposure period, and a three-month follow-up period. Outcomes were myocardial infarction, stroke, and death from cardiovascular disease.Results117,050 patients contributed 776,203 unique iron exposure/follow-up periods. After adjustment, we found no significant associations of bolus dose versus maintenance, hazards ratio for composite outcome, 1.03 (95% C.I. 0.99, 1.07), or high dose versus low dose intravenous iron, hazards ratio for composite outcome, 0.99 (95% C.I. 0.96, 1.03). There were no consistent associations of either high or bolus dose versus low or maintenance respectively among pre-specified subgroups.ConclusionsStrategies favoring large doses of intravenous iron were not associated with increased short-term cardiovascular morbidity and mortality. Investigation of the long-term safety of the various intravenous iron supplementation strategies may still be warranted.