Project description:The Oka vaccine is a live attenuated vaccine for the prevention of varicella. Although the vaccine differs from the progenitor virus by over 40 mutations, only three of these are fixed, the rest being a mixture of the wildtype and the vaccine allele. To examine the extent of this variability between two of the three commercially available vaccine preparations, we analysed the vaccine/wildtype allele frequencies present at fifteen vaccine loci in five preparations each from two different manufacturers of the vOka vaccine. Our results suggest that differences in manufacturing processes between the two companies have resulted in significant variation in the frequencies of the vaccine/wildtype alleles in their vaccines. Yet despite these differences, the allele frequencies in the vaccines from the two companies are strongly correlated. We discuss the significance of these findings and the role of evolutionary processes that influence the production of this live attenuated vaccine.
Project description:Varicella-zoster virus (VZV) is a herpesvirus and is the causative agent of chicken pox (varicella) and shingles (herpes zoster). Active immunization against varicella became possible with the development of live attenuated varicella vaccine. The Oka vaccine strain was isolated in Japan from a child who had typical varicella, and it was then attenuated by serial passages in cell culture. Several manufacturers have obtained this attenuated Oka strain and, following additional passages, have developed their own vaccine strains. Notably, the vaccines Varilrix and Varivax are produced by GlaxoSmithKline Biologicals and Merck & Co., Inc., respectively. Both vaccines have been well studied in terms of safety and immunogenicity. In this study, we report the complete nucleotide sequence of the Varilrix (Oka-V(GSK)) and Varivax (Oka-V(Merck)) vaccine strain genomes. Their genomes are composed of 124,821 and 124,815 bp, respectively. Full genome annotations covering the features of Oka-derived vaccine genomes have been established for the first time. Sequence analysis indicates 36 nucleotide differences between the two vaccine strains throughout the entire genome, among which only 14 are involved in unique amino acid substitutions. These results demonstrate that, although Oka-V(GSK) and Oka-V(Merck) vaccine strains are not identical, they are very similar, which supports the clinical data showing that both vaccines are well tolerated and elicit strong immune responses against varicella.
Project description:Varicella-zoster virus (VZV) infection results in varicella mostly in children. Reactivation of the virus causes herpes zoster (HZ), mostly in adults. A live attenuated vaccine (vOka-Biken) was originally derived from the parental strain pOka. Several live attenuated vaccines based on the Oka strain are currently available worldwide. In China, varicella vaccines have been licensed by four manufacturers. In this study, we analyze the whole-genome sequence (WGS) of vOka-BK produced by Changchun BCHT Biotechnology also known as Baike. vOka-BK WGS was compared against the genomic sequences of four other Oka strains: pOka, vOka-Biken, vOka-Varilrix from GlaxoSmithKline, and vOka-Varivax from Merck & Co. A previous study identified 137 single nucleotide polymorphisms (SNPs) shared by all vOkas. The current analysis used these data as a reference to compare with vOka-BK WGS and focused on 54 SNPs located in the unique regions of the genome. Twenty-eight nonsynonymous substitutions were identified, ORF62 and ORF55 featuring the most amino acid changes with 9 and 3, respectively. Among the 54 SNPs, 10 had a different mutation profile in vOka-BK compared to the other three vaccines. A comparison with the clade 3 strain Ellen, known to be attenuated, identified three shared amino acid changes: *130R in ORF0 and R958G and S628G in ORF62. This analysis provides the first comparison of a Chinese varicella vaccine to the other vaccines available worldwide and identifies sites potentially critical for VZV vaccine efficacy.IMPORTANCE Varicella, also known as chickenpox, is a highly contagious disease, caused by varicella-zoster virus (VZV). Varicella is a common childhood disease that can be prevented by a live attenuated vaccine. The first available vaccine was derived from the parental Oka strain in Japan in 1974. Several live attenuated vaccines based on the Oka strain are currently available worldwide. Among the four vaccines produced in China, the vaccine manufactured by Changchun BCHT Biotechnology, also known as Baike, has been reported to be very efficacious. Comparative genomic analysis of the Baike vaccine with other Oka vaccine strains identified sites that might be involved in vaccine efficacy, as well as important for the biology of the virus.
Project description:The currently used Japanese Oka and Korean MAV/06-attenuated varicella vaccine strains belong to clade 2 genotype varicella-zoster viruses (VZV). More than seven clades of VZV exist worldwide. In this study, we investigated the cross-reactivity of antibodies induced by clade 2 genotype vaccines against VZV strains belonging to clades 1, 2, 3, and 5 using a fluorescent antibody to membrane antigen (FAMA) test. Among 59 donors, 29 were vaccinated with the MAV/06 strain MG1111 (GC Biopharma, South Korea) and the other 30 were vaccinated with the Oka strain VARIVAX (Merck, USA). The sera were titrated using FAMA tests prepared with six different VZV strains (two vaccine strains, one wild-type clade 2 strain, and one each of clade 1, 3, and 5 strains). The ranges of geometric mean titers (GMTs) of FAMA against six different strains were 158.7-206.5 and 157.6-238.9 in MG1111 and VARIVAX groups, respectively. GMTs of the MG1111 group against all six strains were similar; however, GMTs of the VARIVAX group showed differences of approximately 1.5-fold depending on the strains. Nevertheless, the GMTs of the two vaccinated groups for the same strain were not significantly different. These results suggest that both MG1111 and VARIVAX vaccinations induce cross-reactive humoral immunity against other clades of VZV.
Project description:ImportanceRecommendations for additional doses of COVID-19 vaccines for people with HIV (PWH) are restricted to those with advanced disease or unsuppressed HIV viral load. Understanding SARS-CoV-2 infection risk after vaccination among PWH is essential for informing vaccination guidelines.ObjectiveTo estimate the rate and risk of breakthrough infections among fully vaccinated PWH and people without HIV (PWoH) in the United States.Design, setting, and participantsThis cohort study used the Corona-Infectious-Virus Epidemiology Team (CIVET)-II (of the North American AIDS Cohort Collaboration on Research and Design [NA-ACCORD], which is part of the International Epidemiology Databases to Evaluate AIDS [IeDEA]), collaboration of 4 prospective, electronic health record-based cohorts from integrated health systems and academic health centers. Adult PWH who were fully vaccinated prior to June 30, 2021, were matched with PWoH on date of full vaccination, age, race and ethnicity, and sex and followed up through December 31, 2021.ExposuresHIV infection.Main outcomes and measuresCOVID-19 breakthrough infections, defined as laboratory evidence of SARS-CoV-2 infection or COVID-19 diagnosis after a patient was fully vaccinated.ResultsAmong 113 994 patients (33 029 PWH and 80 965 PWoH), most were 55 years or older (80 017 [70%]) and male (104 967 [92%]); 47 098 (41%) were non-Hispanic Black, and 43 218 (38%) were non-Hispanic White. The rate of breakthrough infections was higher in PWH vs PWoH (55 [95% CI, 52-58] cases per 1000 person-years vs 43 [95% CI, 42-45] cases per 1000 person-years). Cumulative incidence of breakthroughs 9 months after full vaccination was low (3.8% [95% CI, 3.7%-3.9%]), albeit higher in PWH vs PWoH (4.4% vs 3.5%; log-rank P < .001; risk difference, 0.9% [95% CI, 0.6%-1.2%]) and within each vaccine type. Breakthrough infection risk was 28% higher in PWH vs PWoH (adjusted hazard ratio, 1.28 [95% CI, 1.19-1.37]). Among PWH, younger age (<45 y vs 45-54 y), history of COVID-19, and not receiving an additional dose (aHR, 0.71 [95% CI, 0.58-0.88]) were associated with increased risk of breakthrough infections. There was no association of breakthrough with HIV viral load suppression, but high CD4 count (ie, ≥500 cells/mm3) was associated with fewer breakthroughs among PWH.Conclusions and relevanceIn this study, COVID-19 vaccination, especially with an additional dose, was effective against infection with SARS-CoV-2 strains circulating through December 31, 2021. PWH had an increased risk of breakthrough infections compared with PWoH. Expansion of recommendations for additional vaccine doses to all PWH should be considered.
Project description:National one-dose varicella vaccination at 12 months of age was implemented in Taiwan since 2004.Our study aimed to evaluate breakthrough varicella (BV) in post-vaccine era and its associated risk factors. We retrospectively identified children vaccinated against varicella between 12-23 months of age during 2004-2008. Their vaccination information was extracted from the national vaccination registry system and linked to the 2004-2014 National Health Insurance database. BV was defined as a diagnosis of varicella (ICD-9-CM codes 052 and 052.0-052.9) beyond 42 days post-vaccination. Multiple Cox regression model was used to identify risk factors for BV. Among 932,874 enrolled vaccinees, 26,446 (2.8%) had BV and 219 (0.024%) required hospitalization over the study period. Varicella incidence declined from 4.71 per 1000 person-year (PY) in 2004 to 0.81/1000 PY in 2014. BV incidence decreased from 3.90/1000 PY at first year to 1.94/1000 PY at 11th year after vaccination. Females had a lower risk for BV than males (hazard ratio [HR] 0.85, 95% CI, 0.83-0.87); Varivax® recipients had a lower risk for BV than Varilrix® recipients (HR 0.75, 95% CI, 0.72-0.78). Our study showed the incidence of varicella, BV and varicella-related hospitalizations in Taiwan were kept low in post-vaccine era.
Project description:The attenuated Oka vaccine (V-Oka) strain of varicella-zoster virus (VZV) effectively reduces disease produced by primary infection and virus reactivation. V-Oka was developed by propagation of the Oka parental (P-Oka) strain of VZV in guinea pig and human embryo fibroblasts. Complete DNA sequencing of both viruses has revealed 63 sites that differ between P-Oka and V-Oka, 37 of which are located within 21 unique open reading frames (ORFs). Of the ORFs that differ, ORF 62 contains the greatest number (10) of mutated sites. ORF 62 encodes IE 62, the major immediate-early transactivator of virus genes, and is essential for lytic virus replication. To determine whether a disproportionate number of mutations in ORF 62 might account for virus attenuation, we compared the global pattern of V-Oka gene expression to that of P-Oka. Transcription of ORFs 62, 65, 66, and 67 was suppressed, whereas ORF 41 was elevated in V-Oka-infected cells compared to P-Oka-infected cells (P < 0.01; z test). Suppression of ORF 62, 65, and 66 transcription was confirmed by quantitative dot blot and Western blot analyses. Transient-transfection assays to determine whether mutations within V-Oka-derived IE 62 affected its ability to transactivate VZV gene promoters revealed similar IE 62 transactivation of VZV gene 20, 21, 28, 29, 65, and 66 promoters in both P-Oka and V-Oka. Together, our results indicate that mutations in V-Oka IE 62 alone are unlikely to account for vaccine virus attenuation.
Project description:ImportanceUnderstanding the severity of postvaccination SARS-CoV-2 (ie, COVID-19) breakthrough illness among people with HIV (PWH) can inform vaccine guidelines and risk-reduction recommendations.ObjectiveTo estimate the rate and risk of severe breakthrough illness among vaccinated PWH and people without HIV (PWoH) who experience a breakthrough infection.Design, setting, and participantsIn this cohort study, the Corona-Infectious-Virus Epidemiology Team (CIVET-II) collaboration included adults (aged ≥18 years) with HIV who were receiving care and were fully vaccinated by June 30, 2021, along with PWoH matched according to date fully vaccinated, age group, race, ethnicity, and sex from 4 US integrated health systems and academic centers. Those with postvaccination COVID-19 breakthrough before December 31, 2021, were eligible.ExposuresHIV infection.Main outcomes and measuresThe main outcome was severe COVID-19 breakthrough illness, defined as hospitalization within 28 days after a breakthrough SARS-CoV-2 infection with a primary or secondary COVID-19 discharge diagnosis. Discrete time proportional hazards models estimated adjusted hazard ratios (aHRs) and 95% CIs of severe breakthrough illness within 28 days of breakthrough COVID-19 by HIV status adjusting for demographic variables, COVID-19 vaccine type, and clinical factors. The proportion of patients who received mechanical ventilation or died was compared by HIV status.ResultsAmong 3649 patients with breakthrough COVID-19 (1241 PWH and 2408 PWoH), most were aged 55 years or older (2182 patients [59.8%]) and male (3244 patients [88.9%]). The cumulative incidence of severe illness in the first 28 days was low and comparable between PWoH and PWH (7.3% vs 6.7%; risk difference, -0.67%; 95% CI, -2.58% to 1.23%). The risk of severe breakthrough illness was 59% higher in PWH with CD4 cell counts less than 350 cells/μL compared with PWoH (aHR, 1.59; 95% CI, 0.99 to 2.46; P = .049). In multivariable analyses among PWH, being female, older, having a cancer diagnosis, and lower CD4 cell count were associated with increased risk of severe breakthrough illness, whereas previous COVID-19 was associated with reduced risk. Among 249 hospitalized patients, 24 (9.6%) were mechanically ventilated and 20 (8.0%) died, with no difference by HIV status.Conclusions and relevanceIn this cohort study, the risk of severe COVID-19 breakthrough illness within 28 days of a breakthrough infection was low among vaccinated PWH and PWoH. PWH with moderate or severe immune suppression had a higher risk of severe breakthrough infection and should be included in groups prioritized for additional vaccine doses and risk-reduction strategies.
Project description:BackgroundUniversal varicella vaccination might reduce opportunities for varicella-zoster virus (VZV) exposure and protective immunological boosting, thus increasing herpes zoster incidence in latently infected adults. We assessed humoral and cell-mediated immunity (CMI), as markers of VZV exposure, in adults aged ≥50 years.MethodsWe repurposed data from placebo recipients in a large multinational clinical trial (ZOE-50). Countries were clustered based on their varicella vaccination program characteristics, as having high, moderate, or low VZV circulation. Anti-VZV antibody geometric mean concentrations, median frequencies of VZV-specific CD4 T cells, and percentages of individuals with increases in VZV-specific CD4 T-cell frequencies were compared across countries and clusters. Sensitivity analyses using a variable number of time points and different thresholds were performed for CMI data.ResultsVZV-specific humoral immunity from 17 countries (12 high, 2 moderate, 3 low circulation) varied significantly between countries (P < .0001) but not by VZV circulation. No significant differences were identified in VZV-specific CMI between participants from 2 high versus 1 low circulation country. In 3/5 sensitivity analyses, increases in CMI were more frequent in high VZV circulation countries (.03 ≤ P < .05).ConclusionsWe found no consistent evidence of reduced VZV exposure among older adults in countries with universal varicella vaccination.Clinical trials registrationNCT01165177.