Unknown

Dataset Information

0

Critical role of oxidative stress in estrogen-induced carcinogenesis.


ABSTRACT: Mechanisms of estrogen-induced tumorigenesis in the target organ are not well understood. It has been suggested that oxidative stress resulting from metabolic activation of carcinogenic estrogens plays a critical role in estrogen-induced carcinogenesis. We tested this hypothesis by using an estrogen-induced hamster renal tumor model, a well established animal model of hormonal carcinogenesis. Hamsters were implanted with 17beta-estradiol (betaE2), 17alpha-estradiol (alphaE2), 17alpha-ethinylestradiol (alphaEE), menadione, a combination of alphaE2 and alphaEE, or a combination of alphaEE and menadione for 7 months. The group treated with betaE2 developed target organ specific kidney tumors. The kidneys of hamsters treated with alphaE2, alphaEE, or menadione alone did not show any gross evidence of tumor. Kidneys of hamsters treated with a combination of alphaE2 and alphaEE showed early signs of proliferation in the interstitial cells. Kidneys of hamsters treated with a combination of menadione and alphaEE showed foci of tumor with congested tubules and atrophic glomeruli. betaE2-treated tumor-bearing kidneys showed >2-fold increase in 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) levels compared with untreated controls. Kidneys of hamsters treated with a combination of menadione and alphaEE showed increased 8-iso-PGF(2alpha) levels compared with untreated controls, whereas no increase in 8-iso-PGF(2alpha) was detected in kidneys of alphaEE-treated group. A chemical known to produce oxidative stress or a potent estrogen with poor ability to produce oxidative stress, were nontumorigenic in hamsters, when given as single agents, but induced renal tumors, when given together. Thus, these data provide evidence that oxidant stress plays a crucial role in estrogen-induced carcinogenesis.

SUBMITTER: Bhat HK 

PROVIDER: S-EPMC153022 | biostudies-literature | 2003 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Critical role of oxidative stress in estrogen-induced carcinogenesis.

Bhat Hari K HK   Calaf Gloria G   Hei Tom K TK   Loya Theresa T   Vadgama Jaydutt V JV  

Proceedings of the National Academy of Sciences of the United States of America 20030324 7


Mechanisms of estrogen-induced tumorigenesis in the target organ are not well understood. It has been suggested that oxidative stress resulting from metabolic activation of carcinogenic estrogens plays a critical role in estrogen-induced carcinogenesis. We tested this hypothesis by using an estrogen-induced hamster renal tumor model, a well established animal model of hormonal carcinogenesis. Hamsters were implanted with 17beta-estradiol (betaE2), 17alpha-estradiol (alphaE2), 17alpha-ethinylestr  ...[more]

Similar Datasets

| S-EPMC6545235 | biostudies-literature
2008-06-15 | E-GEOD-7625 | biostudies-arrayexpress
| S-EPMC3221921 | biostudies-literature
| S-EPMC5354803 | biostudies-literature
| S-EPMC5017015 | biostudies-literature
2007-10-01 | GSE7625 | GEO
| S-EPMC8791758 | biostudies-literature
| S-EPMC2693332 | biostudies-literature
| S-EPMC4955191 | biostudies-literature