Project description:We determined the DNA sequence of a 2,232-bp region immediately upstream of the pcm gene at 59 min on the Escherichia coli chromosome that encodes an L-isoaspartyl protein methyltransferase with an important role in stationary-phase survival. Two open reading frames of 477 and 1,524 bp were found oriented in the same direction as that of the pcm gene. The latter open reading frame overlapped the 5' end of the pcm gene by 4 bp. Coupled in vitro transcription-translation analysis of DNA containing the 1,524-bp open reading frame directly demonstrated the production of a 37,000-Da polypeptide corresponding to a RNA species generated from a promoter within the open reading frame. The deduced amino acid sequence showed no similarity to known protein sequences. To test the function of this gene product, we constructed a mutant strain in which a kanamycin resistance element was inserted at a BstEII site in the middle of its coding region in an orientation that does not result in reduction of Pcm methyltransferase activity. These cells were found to survive poorly in stationary phase, at elevated temperatures, and in high-salt media compared with parent cells containing the intact gene, and we thus designate this gene surE (survival). surE appears to be the first gene of a bicistronic operon also containing the pcm gene. The phenotypes of mutations in either gene are very similar and indicate that both gene products are important for the viability of E. coli cells under stressful conditions.
Project description:This review centers on the stationary phase of bacterial culture. The basic processes specific to the stationary phase, as well as the regulatory mechanisms that allow the bacteria to survive in conditions of stress, are described.
Project description:An open reading frame located in the bisC-cspA intergenic region, or at 80.1 min on the Escherichia coli chromosome, encodes a hypothetical 2-hydroxyacid dehydrogenase, which was identified as a result of the E. coli Genome Sequencing Project. We report here that the product of the gene (yiaE) is a 2-ketoaldonate reductase (2KR). The gene was cloned and expressed with a C-terminal His tag in E. coli, and the protein was purified by metal-chelate affinity chromatography. The determination of the NH2-terminal amino acid sequence of the protein defined the translational start site of this gene. The enzyme was found to be a 2KR catalyzing the reduction of 2, 5-diketo-D-gluconate to 5-keto-D-gluconate, 2-keto-D-gluconate (2KDG) to D-gluconate, 2-keto-L-gulonate to L-idonate. The reductase was optimally active at pH 7.5, with NADPH as a preferred electron donor. The deduced amino acid sequence showed 69.4% identity with that of 2KR from Erwinia herbicola. Disruption of this gene on the chromosome resulted in the loss of 2KR activity in E. coli. E. coli W3110 was found to grow on 2KDG, whereas the mutant deficient in 2KR activity was unable to grow on 2KDG as the carbon source, suggesting that 2KR is responsible for the catabolism of 2KDG in E. coli and the diminishment of produced 2KDG from D-gluconate in the cultivation of E. coli harboring a cloned gluconate dehydrogenase gene.
Project description:The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS) and other structural techniques. The proteins are (i) class I fructose-1,6-bisphosphate aldolase (FbaB); (ii) inorganic pyrophosphatase (PPase); (iii) 5-keto-4-deoxyuronate isomerase (KduI); and (iv) glutamate decarboxylase (GadA). The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin) metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.
Project description:The aim of this study was to determine the fate of ribosomes and r-proteins. In this respect, SILAC (Stable Isotope Labeled Amino acids in cell Culture) based experimental approach was used. E.coli cells were grown in MOPS medium supplemented with “heavy” labeled arginine (Arg10) and lysine (Lys8). At the mid-log phase, the culture was further supplemented with a 20-fold molar excess of “light” unlabeled arginine (Arg0) and lysine (Lys0), divided into 8 aliquots, and grown for 14 days. Cell samples were collected at day one (24h), day two (48h), and subsequently in 48h intervals over the following 12 days. The quantities of r-proteins in the proteome were determined using SILAC based LC-MS/MS and normalized to the corresponding values of day one.
Project description:In enteric bacteria, adaptation to a number of different stresses is mediated by the RpoS protein, one of several sigma factors that collectively allow a tailored transcriptional response to environmental cues. Stress stimuli including low temperature, osmotic shock, nutrient limitation, and growth to stationary phase (SP) all result in a substantial increase in RpoS abundance and activity. The mechanism of regulation depends on the specific signal but may occur at the level of transcription, translation, protein activity, or targeted proteolysis. In both Escherichia coli and Salmonella enterica, SP induction of RpoS in rich medium is >30 fold and includes effects on both transcription and translation. Recently, we found that SP control of rpoS transcription in S. enterica involves repression of the major rpoS promoter during exponential phase by the global transcription factor Fis. Working primarily with E. coli, we now show that 24 nucleotides of the rpoS ribosome-binding site (RBS) are necessary and sufficient for a large part of the increase in rpoS translation as cells grow to SP. Genetic evidence points to an essential role for the leader nucleotides just upstream of the Shine-Dalgarno sequence but is conflicted on the question of whether sequence or structure is important. SP regulation of rpoS is conserved between E. coli and S. enterica. When combined with an fis mutation to block transcriptional effects, replacement of the rpoS RBS sequence by the lacZ RBS eliminates nearly all SP induction of RpoS.
Project description:We report a 1.432-kb DNA sequence at 59 min on the Escherichia coli chromosome that connects the published sequences of the pcm gene for the isoaspartyl protein methyltransferase and that of the katF or rpoS (katF/rpoS) gene for a sigma factor involved in stationary-phase gene expression. Analysis of the DNA sequence reveals an open reading frame potentially encoding a polypeptide of 379 amino acids. The polypeptide sequence includes a consensus bacterial lipidation sequence present at residues 23 to 26 (Leu-Ala-Gly-Cys), four octapeptide proline- and glutamine-rich repeats of consensus sequence QQPQIQPV, and four heptapeptide threonine- and serine-rich repeats of consensus sequence PTA(S,T)TTE. The deduced amino acid sequence, especially in the C-terminal region, is similar to that of the Haemophilus somnus LppB lipoprotein outer membrane antigen (40% overall sequence identity; 77% identity in last 95 residues). The LppB lipoprotein binds Congo red dye and has been proposed to be a virulence determinant in H. somnus. Utilizing a plasmid construct with the E. coli gene under the control of a phage T7 promoter, we demonstrate the lipidation of this gene product by the incorporation of [3H]palmitic acid into a 42-kDa polypeptide. We also show that treatment of E. coli cells with globomycin, an inhibitor of the lipoprotein signal peptidase, results in the accumulation of a 46-kDa precursor. We thus designate the protein NlpD (new lipoprotein D). E. coli cells overexpressing NlpD bind Congo red dye, suggesting a common function with the H. somnus LppB protein. Disruption of the chromosomal E. coli nlpD gene by insertional mutagenesis results in decreased stationary-phase survival after 7 days.
Project description:When nutrients run out, bacteria enter a dormant metabolic state. This low or undetectable metabolic activity helps bacteria to preserve their scant reserves for the future needs, yet it also diminishes their ability to scan the environment for new growth-promoting substrates. However, neighboring microbial growth is a reliable indicator of a favorable environment and can thus serve as a cue for exiting dormancy. Here we report that for Escherichia coli and Pseudomonas aeruginosa this cue is provided by the basic peptidoglycan unit (i.e. muropeptide). We show that several forms of muropeptides from a variety of bacterial species can stimulate growth resumption of dormant cells and the sugar - peptide bond is crucial for this activity. These results, together with previous research that identifies muropeptides as a germination signal for bacterial spores, and their detection by mammalian immune cells, show that muropeptides are a universal cue for bacterial growth.
Project description:BackgroundExoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale.ResultsThe values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R.ConclusionsThis work had identified PNPase as a central player associated with mRNA degradation in stationary phase.
Project description:As nutrients are depleted and cell division ceases in batch cultures of bacteria, active processes are required to ensure that each cell has a complete copy of its genome. How chromosome number is manipulated and maintained in nondividing bacterial cells is not fully understood. Using flow cytometric analysis of cells from different growth phases, we show that the Holliday junction-processing enzymes RuvABC and RecG, as well as RecBCD, the enzyme complex that initiates DNA double-strand break repair, are required to establish the normal distribution of fluorescent peaks, which is commonly accepted to reflect the distribution of chromosome numbers. Our results reveal that these proteins are required for the proper processing of chromosomes in stationary phase.