Project description:1. Entry rates of acetone were estimated in normal and ketonaemic sheep by using a constant-infusion technique with [(14)C]acetone. Entry rates were less than 1mg./min. in normal and 2-6mg./min. in ketonaemic sheep. 2. Only 1-2% of plasma glucose is derived from acetone. 3. Labelling in lactate is consistent with the conversion of acetone into glucose through lactate. 4. There is significant labelling of blood but not rumen volatile fatty acids.
Project description:Metabolism is involved in both pharmacology and toxicology of most xenobiotics including drugs. Yet, visualization tools facilitating metabolism exploration are still underused, despite the availibility of pertinent bioinformatics solutions. Since molecular networking appears as a suitable tool to explore structurally related molecules, we aimed to investigate its interest in in vitro metabolism exploration. Quetiapine, a widely prescribed antipsychotic drug, undergoes well-described extensive metabolism, and is therefore an ideal candidate for such a proof of concept. Quetiapine was incubated in metabolically competent human liver cell models (HepaRG) for different times (0 h, 3 h, 8 h, 24 h) with or without cytochrom P450 (CYP) inhibitor (ketoconazole as CYP3A4/5 inhibitor and quinidine as CYP2D6 inhibitor), in order to study its metabolism kinetic and pathways. HepaRG culture supernatants were analyzed on an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-HRMS/MS). Molecular networking approach on LC-HRMS/MS data allowed to quickly visualize the quetiapine metabolism kinetics and determine the major metabolic pathways (CYP3A4/5 and/or CYP2D6) involved in metabolite formation. In addition, two unknown putative metabolites have been detected. In vitro metabolite findings were confirmed in blood sample from a patient treated with quetiapine. This is the first report using LC-HRMS/MS untargeted screening and molecular networking to explore in vitro drug metabolism. Our data provide new evidences of the interest of molecular networking in drug metabolism exploration and allow our in vitro model consistency assessment.
Project description:Bilirubin, a major end product of heme breakdown, is an important constituent of bile, responsible for its characteristic colour. Over recent decades, our understanding of bilirubin metabolism has expanded along with the processes of elimination of other endogenous and exogenous anionic substrates, mediated by the action of multiple transport systems at the sinusoidal and canalicular membrane of hepatocytes. Several inherited disorders characterised by impaired bilirubin conjugation (Crigler-Najjar syndrome type I and type II, Gilbert syndrome) or transport (Dubin-Johnson and Rotor syndrome) result in various degrees of hyperbilirubinemia of either the predominantly unconjugated or predominantly conjugated type. Moreover, disrupted regulation of hepatobiliary transport systems can explain jaundice in many acquired liver disorders. In this review, we discuss the recent data on liver bilirubin handling based on the discovery of the molecular basis of Rotor syndrome. The data show that a substantial fraction of bilirubin conjugates is primarily secreted by MRP3 at the sinusoidal membrane into the blood, from where they are subsequently reuptaken by sinusoidal membrane-bound organic anion transporting polypeptides OATP1B1 and OATP1B3. OATP1B proteins are also responsible for liver clearance of bilirubin conjugated in splanchnic organs, such as the intestine and kidney, and for a number of endogenous compounds, xenobiotics and drugs. Absence of one or both OATP1B proteins thus may have serious impact on toxicity of commonly used drugs cleared by this system such as statins, sartans, methotrexate or rifampicin. The liver-blood cycling of conjugated bilirubin is impaired in cholestatic and parenchymal liver diseases and this impairment most likely contributes to jaundice accompanying these disorders.
Project description:Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.
Project description:Pterostilbene (PTS), a compound most abundantly found in blueberries, is a natural analog of resveratrol. Several plant species, such as peanuts and grapes, produce PTS. While resveratrol has been extensively studied for its antioxidant properties, recent evidence also points out the diverse therapeutic potential of PTS. Several studies have identified the robust pharmacodynamic features of PTS, including better intestinal absorption and elevated hepatic stability than resveratrol. Indeed, due to its higher bioavailability paired with reduced toxicity compared to other stilbenes, PTS has become an attractive drug candidate for the treatment of several disease conditions, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. This review article provides an extensive summary of the nutraceutical potential of PTS in various disease conditions while discussing the crucial mechanistic pathways implicated. In particular, we share insights from our studies about the Nrf2-mediated effect of PTS in diabetes and associated complications. Moreover, we elucidate the important sources of PTS and discuss in detail its pharmacokinetics and the range of formulations and routes of administration used across experimental studies and human clinical trials. Furthermore, this review also summarizes the strategies successfully used to improve dietary availability and the bio-accessibility of PTS.
Project description:Hamsters have been long accepted as animal models to study the lipid metabolism in humans. However, very few scientific works described in detail the fatty acid (FA) composition of plasma and erythrocytes in hamsters in relation to their dietary intake, and none work was found comparing them with that described in humans. Therefore, a study was carried out to compare the effect of ingesting olive oil or dairy fat, as part of an equilibrated diet in healthy subjects, on plasma and erythrocytes FA composition. More than 40 FA were detected in samples of both species. It was demonstrated that plasma total FA (TFA) concentration and FA profiles are similar in humans and hamsters. In both species linoleic, oleic and palmitic acids are the main FA and accounted for the 70% of TFA. Differences found between species can be explained by differences in the dietary intake and differences in the proportion of triglycerides, cholesteryl esters and phospholipid fractions in plasma of both species. Changes in dietary FA intake causes similar changes in FA concentration in the plasma of both species and can be explained by the same metabolic processes. The erythrocyte FA profile differs more between the two species. Moreover, unlike humans, the FA profile of hamster erythrocytes is more sensitive to changes in dietary FA than that of plasma.
Project description:In vitro ketone production continues to be a challenge due to the biochemical features of the enzymes involved-even when some of them have been extensively characterized (e.g. thiolase from Clostridium acetobutylicum), the assembly of synthetic enzyme cascades still face significant limitations (including issues with protein aggregation and multimerization). Here, we designed and assembled a self-sustaining enzyme cascade with acetone yields close to the theoretical maximum using acetate as the only carbon input. The efficiency of this system was further boosted by coupling the enzymatic sequence to a two-step ATP-regeneration system that enables continuous, cost-effective acetone biosynthesis. Furthermore, simple methods were implemented for purifying the enzymes necessary for this synthetic metabolism, including a first-case example on the isolation of a heterotetrameric acetate:coenzyme A transferase by affinity chromatography.
Project description:In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane --> 2-propanol --> acetone --> methyl acetate --> acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism.
Project description:Idiopathic pulmonary arterial hypertension (IPAH) is a rare vascular disease with a poor prognosis, and the mechanism of its development remains unclear. Further molecular pathology studies may contribute to a comprehensive understanding of IPAH and provide new insights into diagnostic markers and potential therapeutic targets. Iron deficiency has been reported in 43-63% of patients with IPAH and is associated with reduced exercise capacity and higher mortality, suggesting that dysregulated iron metabolism may play an unrecognized role in influencing the development of IPAH. In this study, we explored the regulatory mechanisms of iron metabolism in IPAH by bioinformatic analysis. The molecular function of iron metabolism-related genes (IMRGs) is mainly enriched in active transmembrane transporter activity, and they mainly affect the biological process of response to oxidative stress. Ferroptosis and fluid shear stress and atherosclerosis pathways may be the critical pathways regulating iron metabolism in IPAH. We further identified 7 key genes (BCL2, GCLM, MSMO1, SLC7A11, SRXN1, TSPAN5, and TXNRD1) and 5 of the key genes (BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1) as target genes may be regulated by 6 dysregulated miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p) in IPAH. In addition, we predicted potential IPAH drugs-celastrol and cinnamaldehyde-that target iron metabolism based on our results. These results provide insights for further definition of the role of dysregulated iron metabolism in IPAH and contribute to a deeper understanding of the molecular mechanisms and potential therapeutic targets of IPAH.