Unknown

Dataset Information

0

Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex.


ABSTRACT: To investigate potential physiological interactions between the transcellular and paracellular pathways of water transport, we asked whether targeted deletion of Aquaporin 5 (AQP5), the major transcellular water transporter in salivary acinar cells, affected paracellular transport of 4-kDa FITC-labeled dextran (FITC-D), which is transported through the paracellular but not the transcellular route. After i.v. injection of FITC-D into either AQP5 wild-type or AQP5-/- mice and saliva collection for fixed time intervals, we show that the relative amount of FITC-D transported in the saliva of AQP5-/- mice is half that in matched AQP5+/+ mice, indicating a 2-fold decrease in permeability of the paracellular barrier in mice lacking AQP5. We also found a significant difference in the proportion of transcellular vs. paracellular transport between male and female mice. Freeze-fracture electron microscopy revealed an increase in the number of tight junction strands of both AQP5+/+ and AQP5-/- male mice after pilocarpine stimulation but no change in strand number in female mice. Average acinar cell volume was increased by approximately 1.4-fold in glands from AQP5-/- mice, suggesting an alteration in the volume-sensing machinery of the cell. Western blots revealed that expression of Claudin-7, Claudin-3, and Occludin, critical proteins that regulate the permeability of the tight junction barrier, were significantly decreased in AQP5-/- compared with AQP5+/+ salivary glands. These findings reveal the existence of a gender-influenced molecular mechanism involving AQP5 that allows transcellular and paracellular routes of water transport to act in conjunction.

SUBMITTER: Kawedia JD 

PROVIDER: S-EPMC1802728 | biostudies-literature | 2007 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex.

Kawedia Jitesh D JD   Nieman Michelle L ML   Boivin Gregory P GP   Melvin James E JE   Kikuchi Ken-Ichiro K   Hand Arthur R AR   Lorenz John N JN   Menon Anil G AG  

Proceedings of the National Academy of Sciences of the United States of America 20070221 9


To investigate potential physiological interactions between the transcellular and paracellular pathways of water transport, we asked whether targeted deletion of Aquaporin 5 (AQP5), the major transcellular water transporter in salivary acinar cells, affected paracellular transport of 4-kDa FITC-labeled dextran (FITC-D), which is transported through the paracellular but not the transcellular route. After i.v. injection of FITC-D into either AQP5 wild-type or AQP5-/- mice and saliva collection for  ...[more]

Similar Datasets

| S-EPMC8346120 | biostudies-literature
| S-EPMC6888685 | biostudies-literature
| S-EPMC9977872 | biostudies-literature
| S-EPMC4016169 | biostudies-literature
| S-EPMC2776728 | biostudies-literature
| S-EPMC5581167 | biostudies-literature
| S-EPMC6771766 | biostudies-literature
| S-EPMC1147611 | biostudies-other
| S-EPMC2173357 | biostudies-literature
| S-EPMC3273471 | biostudies-literature