Project description:The mef(A) gene from a clinical isolate of Streptococcus pneumoniae exhibiting the M-type resistance to macrolides was found to be part of the 7,244-bp chromosomal element Tn1207.1, which contained 8 open reading frames. orf2 encodes a resolvase/invertase, and orf5 is a homolog of the macrolide-streptogramin B resistance gene msr(SA).
Project description:Susceptibilities to macrolides were evaluated in 267 Streptococcus pneumoniae isolates, of which 182 were from patients with invasive diseases and 85 were from healthy carriers. Of the 98 resistant isolates, 20 strains showed an M phenotype and carried mef. Strains that carried both mef(A) and mef(E) were found: 17 strains carried mef(A) and 3 carried mef(E). The characteristics of the strains carrying the mef genes and the properties of the mef-containing elements were studied. Strains carrying mef(A) belonged to serotype 14, were susceptible to all the antibiotics tested except erythromycin, and appeared to be clonally related by pulsed-field gel electrophoresis (PFGE). The three mef(E) strains belonged to different serotypes, showed different susceptibility profiles, and did not appear to be related by PFGE. The sequences of a fragment of the mef-containing element, which encompassed mef and the msr(A) homolog, were identical among the three mef(E)-positive strains and among the three mef(A)-positive strains, although there were differences between the sequences for the two variants at 168 positions. In all mef(A)-positive strains, the mef element was inserted in celB, which led to impairment of the competence of the strains. In line with insertion of the mef(E) element at a different site, the competence of the mef(E)-positive strains was maintained. Transfer of erythromycin resistance by conjugation was obtained from two of three mef(A) strains but from none of three mef(E) strains. Due to the important different characteristics of the strains carrying mef(A) or mef(E), we suggest that the distinction between the two genes be maintained.
Project description:A strain of Streptococcus agalactiae displayed resistance to 14-, 15-, and 16-membered macrolides. In PCR assays, total genomic DNA from this strain contained neither erm nor mef genes. EcoRI-digested genomic DNA from this strain was cloned into lambda Zap II to construct a library of S. agalactiae genomic DNA. A clone, pAES63, expressing resistance to erythromycin, azithromycin, and spiramycin in Escherichia coli was recovered. Deletion derivatives of pAES63 which defined a functional region on this clone that encoded resistance to 14- and 15-membered, but not 16-membered, macrolides were produced. Studies that determined the levels of incorporation of radiolabelled erythromycin into E. coli were consistent with the presence of a macrolide efflux determinant. This putative efflux determinant was distinct from the recently described Mef pump in Streptococcus pyogenes and Streptococcus pneumoniae and from the multicomponent MsrA pump in Staphylococcus aureus and coagulase-negative staphylococci. Its gene has been designated mreA (for macrolide resistance efflux).
Project description:The macrolide resistance determinants and genetic elements carrying the mef(A) and mef(E) subclasses of the mef gene were studied with Streptococcus agalactiae isolated in 2003 and 2004 from 7,084 vaginorectal cultures performed to detect carrier pregnant women. The prevalence of carriage was 18% (1,276 isolates), and that of erythromycin resistance 11.0% (129 of the 1,171 isolates studied). erm(B), erm(A) subclass erm(TR), and the mef gene, either subclass mef(A) or mef(E), were found in 72 (55.8%), 41 (31.8%), and 12 (9.3%) erythromycin-resistant isolates, while 4 isolates had more than 1 erythromycin resistance gene. Of the 13 M-phenotype mef-containing erythromycin-resistant S. agalactiae isolates, 11 had the mef(E) subclass gene alone, one had both the mef(E) and the erm(TR) subclass genes, and one had the mef(A) subclass gene. mef(E) subclass genes were associated with the carrying element mega in 10 of the 12 mef(E)-containing strains, while the single mef(A) subclass gene found was associated with the genetic element Tn1207.3. The nonconjugative nature of the mega element and the clonal diversity of mef(E)-containing strains determined by pulsed-field gel electrophoresis suggest that transformation is the main mechanism through which this resistance gene is acquired.
Project description:Active macrolide efflux is a major mechanism of macrolide resistance in Streptococcus pneumoniae in many parts of the world, especially North America. In Canada, this active macrolide efflux in S. pneumoniae is predominantly due to acquisition of the mef(E) gene. In the present study, we assessed the mef(E) gene sequence as well as mef(E) expression in variety of low- and high-level macrolide-resistant, clindamycin-susceptible (M-phenotype) S. pneumoniae isolates (erythromycin MICs, 1 to 32 microg/ml; clindamycin MICs, < or = 0.25 microg/ml). Southern blot hybridization with mef(E) probe and EcoRI digestion and relative real-time reverse transcription-PCR were performed to study the mef(E) gene copy number and expression. Induction of mef(E) expression was analyzed by Etest susceptibility testing pre- and postincubation with subinhibitory concentrations of erythromycin, clarithromycin, azithromycin, telithromycin, and clindamycin. The macrolide efflux gene, mef(E), was shown to be a single-copy gene in all 23 clinical S. pneumoniae isolates tested, and expression post-macrolide induction increased 4-, 6-, 20-, and 200-fold in isolates with increasing macrolide resistance (erythromycin MICs 2, 4, 8, and 32 microg/ml, respectively). Sequencing analysis of the macrolide efflux genetic assembly (mega) revealed that mef(E) had a 16-bp deletion 153 bp upstream of the putative start codon in all 23 isolates. A 119-bp intergenic region between mef(E) and mel was sequenced, and a 99-bp deletion was found in 11 of the 23 M-phenotype S. pneumoniae isolates compared to the published mega sequence. However, the mef(E) gene was fully conserved among both high- and low-level macrolide-resistant isolates. In conclusion, increased expression of mef(E) is associated with higher levels of macrolide resistance in macrolide-resistant S. pneumoniae.
Project description:ObjectivesIn streptococci, the type M resistance to macrolides is due to the mef(A)-msr(D) efflux transport system of the ATP-Binding cassette (ABC) superfamily, where it is proposed that mef(A) codes for the transmembrane channel and msr(D) for the two ATP-binding domains. Phage ϕ1207.3 of Streptococcus pyogenes, carrying the mef(A)-msr(D) gene pair, is able to transfer the macrolide efflux phenotype to Streptococcus pneumoniae. Deletion of mef(A) in pneumococcal ϕ1207.3-carrying strains did not affect erythromycin efflux. In order to identify candidate genes likely involved in complementation of mef(A) deletion, the Mef(A) amino acid sequence was used as probe for database searching.ResultsIn silico analysis identified 3 putative candidates in the S. pneumoniae R6 genome, namely spr0971, spr1023 and spr1932. Isogenic deletion mutants of each candidate gene were constructed and used in erythromycin sensitivity assays to investigate their contribution to mef(A) complementation. Since no change in erythromycin sensitivity was observed compared to the parental strain, we produced double and triple mutants to assess the potential synergic activity of the selected genes. Also these mutants did not complement the mef(A) function.
Project description:The mreA gene from Streptococcus agalactiae COH31 gamma/delta, resistant to macrolides and clindamycin by active efflux, has recently been cloned in Escherichia coli, where it was reported to confer macrolide resistance (J. Clancy, F. Dib-Hajj, J. W. Petitpas, and W. Yuan, Antimicrob. Agents Chemother. 41:2719--2723, 1997). Cumulative data suggested that the mreA gene was located on the chromosome of S. agalactiae COH31 gamma/delta. Analysis of the deduced amino acid sequence of mreA revealed significant homology with several bifunctional flavokinases/(flavin adenine dinucleotide (FAD) synthetases, which convert riboflavin to flavin mononucleotide (FMN) and FMN to FAD, respectively. High-performance liquid chromatography experiments showed that the mreA gene product had a monofunctional flavokinase activity, similar to that of RibR from Bacillus subtilis. Sequences identical to those of the mreA gene and of a 121-bp upstream region containing a putative promoter were detected in strains of S. agalactiae UCN4, UCN5, and UCN6 susceptible to macrolides. mreA and its allele from S. agalactiae UCN4 were cloned on the shuttle vector pAT28. Both constructs were introduced into E. coli, where they conferred a similar two- to fourfold increase in the MICs of erythromycin, spiramycin, and clindamycin. The MICs of a variety of other molecules, including crystal violet, acriflavin, sodium dodecyl sulfate, and antibiotics, such as certain cephalosporins, chloramphenicol, doxycycline, nalidixic acid, novobiocin, and rifampin, were also increased. In contrast, resistance to these compounds was not detected when the constructs were introduced into E. faecalis JH2-2. In conclusion, the mreA gene was probably resident in S. agalactiae and may encode a metabolic function. We could not provide any evidence that it was responsible for macrolide resistance in S. agalactiae COH31 gamma/delta; broad-spectrum resistance conferred by the gene in E. coli could involve multidrug efflux pumps by a mechanism that remains to be elucidated.
Project description:The macrolide efflux mechanism of resistance, mef, was characterized in community-acquired respiratory tract infections with Streptococcus pyogenes. Fifty-four (4.6%) M phenotype isolates were screen tested as negative for mef(A). Of these 54 isolates, 5 (0.4%), 27 (2.3%), and 1 (0.1%) were considered to be mef(I) positive, a novel mosaic variant of mef, or a novel subclass of mef, respectively. This study shows (i) the definitive presence of mef(E) in S. pyogenes and its global distribution, (ii) the presence of a mosaic variant of mef composed of mef(A) and mef(E), (iii) the previously undescribed presence of mef(I) in S. pyogenes, and (iv) the presence of a novel subclass of mef in S. pyogenes.