Unknown

Dataset Information

0

Protein-protein Forster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.


ABSTRACT: A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, compared to previous NCP FRET fluorophores, they: (1) are smaller and less hydrophobic, which should minimize perturbations of histone and NCP structure; and (2) have an R0 of 20 A, which is much less than the dimensions of the NCP (approximately 50 A width and approximately 100 A diameter). Equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 DNA positioning element. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation relative to weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of individual H2A-H2B dimers, confirming cooperativity as suggested previously; these data allow quantitative description of the cooperativity. The FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity of the dimer dissociations. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer association and dissociation from the NCP.

SUBMITTER: Hoch DA 

PROVIDER: S-EPMC2031861 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.

Hoch Duane A DA   Stratton Jessica J JJ   Gloss Lisa M LM  

Journal of molecular biology 20070602 4


A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, compared to previous NCP FRET fluorophores, they: (1) are smaller and less hydrophobic, which should minimize perturbations of histone and NCP structure; and (2) have an R0 of 20 A, which is much less than the dim  ...[more]

Similar Datasets

| S-EPMC4929947 | biostudies-literature
| S-EPMC3253952 | biostudies-literature
| S-EPMC8655935 | biostudies-literature
| S-EPMC1301712 | biostudies-other
| S-EPMC5649621 | biostudies-literature
| S-EPMC6441672 | biostudies-literature
| S-EPMC8023573 | biostudies-literature
| S-EPMC1266141 | biostudies-literature