Project description:The intermolecular addition of the alpha-C-H bonds of unactivated dialkylamines to unactivated olefins in the presence of the chloro amido complex [TaCl3(NEt2)2]2 (2) is described. This process forms the branched insertion products in high yields (up to 96%) and selectivities, and represents a rare example of an intermolecular amine-olefin coupling reaction that does not require preactivation of either substrate. The reaction is shown to encompass the addition of the primary C-H bonds in linear- and branched-methylamines, as well as secondary C-H bonds in higher dialkylamines. The related chloroanilido complex [TaCl3(NMePh)2]2 (4) is also shown to catalyze the addition of N-alkyl-arylamines to olefins at temperatures as low as 90 degreesC. 1H NMR spectroscopy, identification of the catalyst structure, and deuterium-labeling experiments all suggest that reactions catalyzed by 2 and 4 occur by turnover-limiting generation of an eta2-imine complex. These labeling studies also imply that more favorable partitioning of the eta2-imine complex toward reaction with alkene versus regeneration of the starting bis-amido complex accounts for the higher reactivity of the mixed halide amido catalyst versus a homoleptic amido complex.
Project description:The intermolecular hydroamination of unactivated alkenes with simple dialkyl amines remains an unsolved problem in organic synthesis. We report a catalytic protocol for efficient additions of cyclic and acyclic secondary alkyl amines to a wide range of alkyl olefins with complete anti-Markovnikov regioselectivity. In this process, carbon-nitrogen bond formation proceeds through a key aminium radical cation intermediate that is generated via electron transfer between an excited-state iridium photocatalyst and an amine substrate. These reactions are redox-neutral and completely atom-economical, exhibit broad functional group tolerance, and occur readily at room temperature under visible light irradiation. Certain tertiary amine products generated through this method are formally endergonic relative to their constituent olefin and amine starting materials and thus are not accessible via direct coupling with conventional ground-state catalysts.
Project description:Herein, we report a modular catalytic technique that streamlines the preparation of gem-difluoroalkanes from unactivated sp3 precursors. The method is characterized by its simplicity, generality, and site selectivity, including the functionalization of advanced intermediates and olefin feedstocks. Our approach is enabled by a cooperative interplay of halogen- and hydrogen-atom transfer, thus offering a new entry point to difluorinated alkyl bioisosteres of interest in drug discovery.
Project description:We herein report a direct intermolecular anti-Markovnikov hydroazidation method for unactivated olefins, which is promoted by a catalytic amount of bench-stable benziodoxole at ambient temperature. This method facilitates previously difficult, direct addition of hydrazoic acid across a wide variety of unactivated olefins in both complex molecules and unfunctionalized commodity chemicals. It conveniently fills a synthetic chemistry gap of existing olefin hydroazidation procedures, and thereby provides a valuable tool for azido-group labeling in organic synthesis and chemical biology studies.
Project description:A RhII -catalyzed direct and stereospecific N-H- and N-alkyl aziridination of olefins is reported that uses hydroxylamine-O-sulfonic acids as inexpensive, readily available, and nitro group-free aminating reagents. Unactivated olefins, featuring a wide range of functional groups, are converted into the corresponding N-H or N-alkyl aziridines in good to excellent yields. This operationally simple, scalable transformation proceeds efficiently at ambient temperature and is tolerant towards oxygen and trace moisture.
Project description:A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly "edit" complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups.
Project description:The regioselective conversion of alkyl-substituted alkenes into linear hydroaminoalkylation products represents a strongly desirable synthetic transformation. In particular, such conversions of N-methylamine derivatives are of great scientific interest, because they would give direct access to important amines with unbranched alkyl chains. Herein, we present a new one-pot procedure that includes an initial alkene hydroaminoalkylation with an α-silylated amine substrate and a subsequent protodesilylation reaction that delivers linear hydroaminoalkylation products with high selectivity from simple alkyl-substituted alkenes. For that purpose, new titanium catalysts have been developed, which are able to activate the α-C-H bond of more challenging α-silylated amine substrates. In addition, a direct relationship between the ligand structure of the new catalysts and the obtained regioselectivity is described.
Project description:The enantioselective allylic amination of unactivated terminal olefins represents a direct and attractive strategy for the synthesis of enantioenriched amines. We have developed the first use of a nitrogen-containing reagent and a chiral palladium catalyst to convert unfunctionalized olefins into enantioenriched allylic amines via an ene reaction/[2,3]-rearrangement.
Project description:A homoleptic scandium trialkyl complex in combination with a borate compound served as an excellent catalyst for the C-H addition of aliphatic tertiary amines to olefins. This highly regiospecific, 100% atom efficient C-H bond alkylation reaction was applicable to a wide variety of tertiary amines and olefins, including functionalised styrenes and unactivated α-olefins. This work represents the first example of rare-earth catalysed olefin hydroaminoalkylation and also the first example of catalytic C-H addition of aliphatic tertiary amines to olefins with any catalyst.