Project description:Purpose of reviewWhen competing events occur, there are two main options for handling them analytically that invoke different assumptions: 1) censor person-time after a competing event (which is akin to assuming they could be prevented) to calculate a conditional risk; or 2) do not censor them (allow them to occur) to calculate an unconditional risk. The choice of estimand has implications when weighing the relative frequency of a beneficial outcome and an adverse outcome in a risk-benefit analysis.Recent findingsWe review the assumptions and interpretations underlying the two main approaches to analyzing competing risks. Using a popular metric in risk-benefit analyses, the Benefit-Risk Ratio, and a toy dataset, we demonstrated that conclusions about whether a treatment was more beneficial or more harmful can depend on whether one uses conditional or unconditional risks.SummaryWe argue that unconditional risks are more relevant to decision-making about exposures with competing outcomes than conditional risks.
Project description:Despite federal prohibition of medical marijuana possession, sale, and use, marijuana use continues to escalate as state legalization persists and expands. The purpose of this discussion is to provide a brief summary of the evidence regarding both potential benefits and risks of medical marijuana use.
Project description:Sodium-glucose co-transporter-2 (SGLT2) inhibitors have several beneficial effects in patients with type 2 diabetes, including glucose lowering, weight loss, blood pressure lowering, and a reduced risk of major adverse cardiovascular events. To address high unmet medical need via improved glycaemic control, several clinical trials have been done to assess the efficacy and safety of SGLT2 inhibitors in combination with insulin therapy in patients with type 1 diabetes. In this Personal View, we summarise data from eight clinical trials of canagliflozin, dapagliflozin, empagliflozin, and sotagliflozin in patients with type 1 diabetes. HbA1c-lowering efficacy was greatest at 8-12 weeks of therapy, but the magnitude of HbA1c lowering waned with longer duration of treatment (up to 52 weeks). Data are not yet available to establish for how long glycaemic efficacy could be sustained during long-term therapy in patients with type 1 diabetes. Moreover, SGLT2 inhibitor therapy induces serious adverse events, including a roughly six-times increased risk of diabetic ketoacidosis. The US Food and Drug Administration estimated that one additional case of ketoacidosis will occur for every 26 patient-years of exposure of patients with type 1 diabetes to sotagliflozin therapy. Assuming a case mortality of 0·4%, this estimate translates into 16 additional deaths per year per 100 000 patients with type 1 diabetes undergoing treatment. These considerations raise important questions about the risk-to-benefit profile of SGLT2 inhibitors when used as adjunctive therapy in patients with type 1 diabetes.
Project description:PremiseThere are advantages to flowering early in the spring, including greater pollinator fidelity and longer fruit maturation time. But plant phenology has advanced in recent years, making many plants vulnerable to freezing damage from late frosts.MethodsTo determine the costs and benefits of flowering early in the growing season, we exposed Prunus pumila plants to two freezing treatments and a delayed flowering treatment in subsequent years. Data were collected on ovary swelling, fruit production, and pollinator visitation on hand- and open-pollinated plants in all treatments. We also measured tissue damage after freeze events.ResultsOur results suggest that flowering time and temperature affect reproductive success, with fewer fruits produced after hard freezes. The same was not true for light freezes, which had minimal impact on reproduction. Freezing damage to plants after a hard freeze did affect the number of dipteran pollinators but not the overall pollinator visitation rate. Despite the clear impact of freezing temperatures on plant reproduction, flowering early provided an advantage in that reproductive output decreased with delayed flowering.ConclusionsOur findings suggest that Prunus pumila will retain the ability to attract pollinators and produce viable seeds if exposed to false spring conditions that involve a light freeze, but hard freezes may reduce yield by an order of magnitude. Although the advantages to flowering early may outweigh the risk of freezing damage under current conditions, it is possible that flower viability may be constrained under continued climate warming.
Project description:Berberine (BBR) is a widely used anti-diabetic agent, and liver glucokinase (GK) has been reported to be involved. However, the mechanisms of BBR in regulating GK are still unknown. Here, we found that BBR upregulated GK immunofluorescence expression in AML12 cells cultured in high glucose and increased glycogen content simultaneously. BBR improved hyperglycemia in db/db mice, and increased liver glucose-6-phosphate/glucose-1-phosphate (G-6-P/G-1-P) was found by analyzing metabolites (serum, liver, and feces) based on gas chromatography-mass spectrometry (GC-MS) metabolomics. Pharmacokinetics-pharmacodynamics (PK-PD) assessment revealed enriched BBR distribution in the liver, and liver G-6-P had the same trend as the concentration-time curve of BBR. G-6-P is solely catalyzed by GK, and GK activity and expression showed a positive correlation with liver BBR levels. In db/db mice, BBR also upregulated GK in liver fractions (cytoplasm and nucleus) and liver glycogen content. GK functionally worked by dissociating from GK regulatory protein (GKRP), and although GKRP expression was not affected, we found a decreased ratio of GK binding with GKRP in BBR treated db/db mice. In conclusion, our study suggests the dissociation of GK from GKRP as the potential mechanism for liver GK increase upon BBR treatment, which contributes to the anti-diabetic effect of BBR.
Project description:The neonatal fragment crystallizable (Fc) receptor (FcRn) functions as a recycling mechanism to prevent degradation and extend the half-life of IgG and albumin in the circulation. Several FcRn inhibitors selectively targeting IgG recycling are now moving rapidly toward clinical practice in neurology and hematology. These molecules accelerate the destruction of IgG, reducing pathogenic IgG and IgG immune complexes, with no anticipated effects on IgA, IgM, IgE, complement, plasma cells, B cells, or other cells of the innate or adaptive immune systems. FcRn inhibitors have potential for future use in a much wider variety of antibody-mediated autoimmune diseases. Given the imminent clinical use, potential for broader utility, and novel mechanism of action of FcRn inhibitors, here we review data from 4 main sources: (a) currently available activity, safety, and mechanism-of-action data from clinical trials of FcRn inhibitors; (b) other procedures and treatments that also remove IgG (plasma donation, plasma exchange, immunoadsorption); (c) diseases resulting in loss of IgG; and (d) primary immunodeficiencies with potential mechanistic similarities to those induced by FcRn inhibitors. These data have been evaluated to provide practical considerations for the assessment, monitoring, and reduction of any potential infection risk associated with FcRn inhibition, in addition to highlighting areas for future research.
Project description:Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Project description:The authors sought to retrospectively analyze the real-world evidence on aliskiren in diabetic patients with or without concomitant renin-angiotensin system (RAS) blocker use based on the Registry for Ambulant Therapy With RAS Inhibitors in Hypertension Patients in Germany (3A). Of 14,986 patients included, 3772 patients had diabetes and 28.5% received aliskiren, 14.3% received angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (ARBs), 35.4% received aliskiren plus an ACE inhibitor/ARB, and 10.5% received other drugs. Ambulatory blood pressure (BP) monitoring (baseline BP 148±15.8/84.0±10.9 mm Hg) revealed stronger diastolic BP reduction for aliskiren plus ACE inhibitor/ARB than aliskiren alone in the low (2.8±0.5 vs 0.6±0.6; P=.004) and intermediate (5.9±0.5 vs 4.5±0.5; P=.04) baseline BP groups. There was a lesser ambulatory BP reduction observed for patients receiving non-RAS in the high baseline category for both systolic (12.5±1.8 vs 17.1±1.0; P=.02) and diastolic (6.9±1.0 vs 9.8±0.6; P=.01) BP. In patients with hypertension and type 2 diabetes, aliskiren was beneficial in lowering BP, with no observed increases in major adverse effects compared with RAS-blocking therapy alone.
Project description:ObjectivePrecision medicine drug therapy seeks to maximize efficacy and minimize harm for individual patients. This will be difficult if drug response and side effects are positively associated, meaning that patients likely to respond best are at increased risk of side effects. We applied joint longitudinal-survival models to evaluate associations between drug response (longitudinal outcome) and the risk of side effects (survival outcome) for patients initiating type 2 diabetes therapy.Study design and settingParticipants were randomized to metformin (MFN), sulfonylurea (SU), or thiazolidinedione (TZD) therapy in the A Diabetes Outcome Progression Trial (ADOPT) drug efficacy trial (n=4,351). Joint models were parameterized for 1) current HbA1c response (change from baseline in HbA1c) and 2) cumulative HbA1c response (total HbA1c change).ResultsWith MFN, greater HbA1c response did not increase the risk of gastrointestinal events (HR per 1% absolute greater current response 0.82 [95% CI 0.67, 1.01]; HR per 1% higher cumulative response 0.90 [95% CI 0.81, 1.00]). With SU, greater current response was associated with an increased risk of hypoglycemia (HR 1.41 [95% CI 1.04, 1.91]). With TZD, greater response was associated with an increased risk of edema (current HR 1.45 [95% CI 1.05, 2.01]; cumulative 1.22 [95% CI 1.07, 1.38]) but not fracture.ConclusionJoint modeling provides a useful framework to evaluate the association between response to a drug and the risk of developing side effects. There may be great potential for widespread application of joint modeling to evaluate the risks and benefits of both new and established medications.