Unknown

Dataset Information

0

Fast adaptation in vestibular hair cells requires myosin-1c activity.


ABSTRACT: In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells.

SUBMITTER: Stauffer EA 

PROVIDER: S-EPMC2682556 | biostudies-literature | 2005 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for  ...[more]

Similar Datasets

2013-01-08 | PXD000104 | Pride
| S-EPMC6078492 | biostudies-literature
| S-EPMC3792037 | biostudies-literature
| S-EPMC4369315 | biostudies-literature
| S-EPMC3026924 | biostudies-literature
| S-EPMC6602158 | biostudies-literature