Project description:BackgroundIncreased extracellular histones in the bloodstream are known as a biomarker for vascular dysfunction associated with severe trauma or sepsis. There is limited information regarding the pathogenic role of circulating histones in neuroinflammation and cerebrovascular endothelial injury. Particularly, it remains unclear whether histones affect the blood-brain barrier (BBB) permeability function.MethodsThe direct effects of unfractionated histones on endothelial barrier properties were first assessed in brain microvascular endothelial cell monolayers by measuring transendothelial electrical resistance and solute flux. This was followed by in vivo mouse experiments, where BBB function was assessed by quantifying brain tissue accumulation of intravenously injected tracers of different molecular sizes, and comparison was made in mice receiving a sublethal dose of histones versus sterile saline. In parallel, the endothelial barrier ultrastructure was examined in histone- and saline-injected animals under transmission electron microscopy, corresponding to the expression of tight junction and adherens junction proteins.ResultsHistones increased paracellular permeability to sodium fluorescein and reduced barrier resistance at 100 μg/mL; these responses were accompanied by discontinuous staining of the tight junction proteins claudin-5 and zona ocludens-1. Interestingly, the effects of histones did not seem to result from cytotoxicity, as evidenced by negative propidium iodide staining. In vivo, histones increased the paracellular permeability of the BBB to small tracers of < 1-kDa, whereas tracers larger than 3-kDa remained impermeable across brain microvessels. Further analysis of different brain regions showed that histone-induced tracer leakage and loss of tight junction protein expression mainly occurred in the hippocampus, but not in the cerebral cortex. Consistently, opening of tight junctions was found in hippocampal capillaries from histone-injected animals. Protein expression levels of GFAP and iBA1 remained unchanged in histone-injected mice indicating that histones did not affect reactive gliosis. Moreover, cell membrane surface charge alterations are involved in histone-induced barrier dysfunction and tight junction disruption.ConclusionsExtracellular histones cause a reversible, region-specific increase in BBB permeability to small molecules by disrupting tight junctions in the hippocampus. We suggest that circulating histones may contribute to cerebrovascular injury or brain dysfunction by altering BBB structure and function.
Project description:Open science provides a compelling framework for accelerating global collaborations and enabling discoveries to understand and treat mental health disorders. Herein, we discuss the advantages and obstacles to adopting open science in mental health research, considering the particularities of sensitive and diverse data types, the potential of co-designing projects with research participants and the opportunity of amplifying open science by integration with mental health care. We present a practical example of how this landscape may be navigated to adopt open science across an entire research centre, in 5 steps, namely leadership committing to open science; finding models, resources and allies; identifying needs; defining open science principles; and putting principles into practice. We derive lessons learned that can be built upon by researchers and research organizations joining the open science movement in mental health.
Project description:Bioscientists reading papers or patents strive to discern the key relationships reported within a document "D" where a bioactivity "A" with a quantitative result "R" (e.g., an IC50) is reported for chemical structure "C" that modulates (e.g., inhibits) a protein target "P". A useful shorthand for this connectivity thus becomes DARCP. The problem at the core of this article is that the community has spent millions effectively burying these relationships in PDFs over many decades but must now spend millions more trying to get them back out. The key imperative for this is to increase the flow into structured open databases. The positive impacts will include expanded data mining opportunities for drug discovery and chemical biology. Over the last decade commercial sources have manually extracted DARCP from ≈300,000 documents encompassing ≈7 million compounds interacting with ≈10,000 targets. Over a similar time, the Guide to Pharmacology, BindingDB and ChEMBL have carried out analogues DARCP extractions. Although their expert-curated numbers are lower (i.e., ≈2 million compounds against ≈3700 human proteins), these open sources have the great advantage of being merged within PubChem. Parallel efforts have focused on the extraction of document-to-compound (D-C-only) connectivity. In the absence of molecular mechanism of action (mmoa) annotation, this is of less value but can be automatically extracted. This has been significantly accomplished for patents, (e.g., by IBM, SureChEMBL and WIPO) for over 30 million compounds in PubChem. These have recently been joined by 1.4 million D-C submissions from three major chemistry publishers. In addition, both the European and US PubMed Central portals now add chemistry look-ups from abstracts and full-text papers. However, the fully automated extraction of DARCLP has not yet been achieved. This stands in contrast to the ability of biocurators to discern these relationships in minutes. Unfortunately, no journals have yet instigated a flow of author-specified DARCP directly into open databases. Progress may come from trends such as open science, open access (OA), findable, accessible, interoperable and reusable (FAIR), resource description framework (RDF) and WikiData. However, we will need to await the technical applicability in respect to DARCP capture to see if this opens up connectivity.
Project description:In the past 40 years of reform and opening-up, China has developed from an economically closed country to a country that is highly dependent on foreign trade. From the perspective of spatiotemporal evolution, we analyze how port opening promoted China's reform and opening-up process. First, the port development process is divided into four periods. In the start-up period, the pilot open port policy created a platform for foreign cooperation and exchange. During the expansion period, port openings promoted the continuous optimization of the trade structure. In the cooperation period, port openings corresponded with the adjustment of China's overall industrial structure. During the optimization period, port openings provided guarantees for the implementation of a national development strategy. Second, we analyze the distribution of ports and their relationship with cross-border logistics and passenger flow. Based on data of foreign trade and passenger flow, a port openness degree measurement model includes port logistics intensity, passenger flow intensity and port city foreign-trade volume is constructed. There are significant types, geographical differences and grade differences of ports' openness.
Project description:The COVID-19 pandemic has caused severe health and economic impacts globally. Strategies to safely reopen economies, travel and trade are a high priority. Until a reliable vaccine is available, non-pharmaceutical techniques are the only available means of disease control. In this paper, we aim to evaluate the extent to which social distancing (SD) and facemask (FM) use can mitigate the transmission of COVID-19 when restrictions are lifted. We used a microsimulation activity-based model for Sydney Greater Metropolitan Area, to evaluate the power of SD and FM in controlling the pandemic under numerous scenarios. The hypothetical scenarios are designed to picture feasible futures under different assumptions. Assuming that the isolation of infected cases and the quarantining of close contacts are in place, different numerical tests are conducted and a full factorial two-way MANOVA test is used to evaluate the effectiveness of the FM and SD control strategies. The main and interactive effects of the containment strategies are evaluated by the total number of infections, percentage of infections reduction, the time it takes to get the pandemic under control, and the intensity of active cases.
Project description:PurposeThe objective of this study was to formulate nanoparticles of D-luciferin (Nano-Luc), DiR (Nano-DiR) and dual functional nanoparticles with DiR and luciferin (Nano-LucDiR) for in-vivo imaging as well as tracking of the nanoparticles in tumors.MethodsNano-Luc and Nano-LucDiR were prepared using different lipids, and subsequently characterized for loading and entrapment efficiency, physical properties, release profile, toxicity and stability. We utilized Response Surface Methodology (RSM) to optimize the nanoparticles using design of experiment (DOE Vr.8.0). Nano-Luc was evaluated against free luciferin to establish its pharmacokinetic parameters in mice. In-vivo imaging of tumors and tracking of nanoparticles was carried out with an IVIS® Spectrum-CT (Caliper) using xenograft, orthotopic and metastatic tumor models in BALB/c nude mice with different cell lines and different routes of nanoparticle administration (subcutaneous, intraperitoneal and intravenous).ResultsParticle size of both Nano-Luc and Nano-LucDiR were found to be <200 nm. Nano-Luc formulation showed a slow and controlled release upto 72 h (90%) in vitro. The optimized Nano-Luc had loading efficiency of 5.0 mg/ml with 99% encapsulation efficiency. Nano-Luc and Nano-LucDiR formulations had good shelf stability. Nano-Luc and Nano-LucDiR enhanced plasma half-life of luciferin compared to free luciferin thus providing longer circulation of luciferin in plasma enabling imaging of tumors for more than 24 h. Nano-LucDiR allowed simultaneous bioluminescent and fluorescent imaging to be conducted, with three-dimensional reconstruct of tumors without losing either signal during the acquisition time.ConclusionNano-Luc and Nano-LucDiR allowed prolonged reproducible in-vivo imaging of tumors, especially during multimodality 3D imaging.
Project description:One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here, we implement the "three-box" quantum game [Aharonov Y, et al. (1991) J Phys A Math Gen 24(10):2315-2328] by using state-of-the-art control and measurement of the nitrogen vacancy center in diamond. In this protocol, the back-action of quantum measurements adds no detectable disturbance to the classical description of the game. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure; however, classical observers are unable to invoke measurement-induced disturbance to explain the discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by ?7.8 standard deviations, allowing us to exclude the property of macroscopic state definiteness from our system. Our experiment is then equivalent to the test of quantum noncontextuality [Kochen S, Specker E (1967) J Math Mech 17(1):59-87] that successfully addresses the measurement detectability loophole.