Project description:Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and associates with HLA-DRB1*04. The Collagen IIp261-273-specific T cell repertoire in the peripheral blood of DR4 + patients at the onset of the disease shows a restricted TCR-beta chain usage among which the most frequent is TRBV25. To define whether this group of DR4-restricted collagen-specific shared T cell could represent markers of active-severe disease and response to therapy, 90 subjects affected by early-RA were enrolled in the study; peripheral blood mononuclear cells were cultured with or without the human collagen II peptide p261-273 and were examined by immunoscope analysis for the usage of the previously identified shared TCR-beta chains. We report that the presence of T cells carrying rearrangement TRBV25 associated with HLA-DR haplotype and disease activity. HLA-DRB1* haplotypes 04-04, 04-01 and 04-11 were significantly associated with usage of TRBV25, higher disease activity at the onset of disease and poor response to DMARDs. Finally, the HLA-DRB1* haplotype appeared complementary with current serologic tools to predict good and poor responders in a treat to target strategy. The data reported here offer clues to predict the course of the disease and to foresee personalized treatments in RA patients.
Project description:Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease that results in joint destruction and subsequent loss of function. To better understand its pathogenesis and to facilitate the search for novel RA therapeutics, we profiled the rat model of collagen-induced arthritis (CIA) to discover and characterize blood biomarkers for RA. Peripheral blood mononuclear cells (PBMCs) were purified using a Ficoll gradient at various time points after type II collagen immunization for RNA preparation. Total RNA was processed for a microarray analysis using Affymetrix GeneChip technology. Statistical comparison analyses identified differentially expressed genes that distinguished CIA from control rats. Clustering analyses indicated that gene expression patterns correlated with laboratory indices of disease progression. A set of 28 probe sets showed significant differences in expression between blood from arthritic rats and that from controls at the earliest time after induction, and the difference persisted for the entire time course. Gene Ontology comparison of the present study with previous published murine microarray studies showed conserved Biological Processes during disease induction between the local joint and PBMC responses. Genes known to be involved in autoimmune response and arthritis, such as those encoding Galectin-3, Versican, and Socs3, were identified and validated by quantitative TaqMan RT-PCR analysis using independent blood samples. Finally, immunoblot analysis confirmed that Galectin-3 was secreted over time in plasma as well as in supernatant of cultured tissue synoviocytes of the arthritic rats, which is consistent with disease progression. Our data indicate that gene expression in PBMCs from the CIA model can be utilized to identify candidate blood biomarkers for RA.
Project description:Collagen-induced arthritis (CIA), an approved animal model for rheumatoid arthritis, is thought to be a T cell-dependent disease. There is evidence that CD8+ T cells are a major subset controlling the pathogenesis of CIA. They probably contribute to certain features of disease, namely tissue destruction and synovial hyperplasia. In this study we examined the role of perforin (pfp), a key molecule of the cytotoxic death pathway that is expressed mainly in CD8+ T cells, for the pathogenesis of CIA. We generated DBA/1J mice suffering from mutations of the pfp molecule, DBA/1J-pfp-/-, and studied their susceptibility to arthritis. As a result, pfp-deficient mice showed a reduced incidence (DBA/1J-pfp+/+, 64%; DBA/1J-pfp-/-, 54%), a slightly delayed onset (onset of disease: DBA/1J-pfp+/+, 53 +/- 3.6; DBA/1J-pfp-/-, 59 +/- 4.9 (mean +/- SEM), and milder form of the disease (maximum disease score: DBA/1J-pfp+/+, 7.3 +/- 1.1; DBA/1J-pfp-/-, 3.4 +/- 1.4 (mean +/- SEM); P < 0.05). Concomitantly, peripheral T cell proliferation in response to the specific antigen bovine collagen II was increased in pfp-/- mice compared with pfp+/+ mice, arguing for an impaired killing of autoreactive T cells caused by pfp deficiency. Thus, pfp-mediated cytotoxicity is involved in the initiation of tissue damage in arthritis, but pfp-independent cytotoxic death pathways might also contribute to CIA.
Project description:The aim of the project is to analyze the plasma proteomic profile of an animal model of arthritis (Collagen Induced Arthritis; CIA) in response to different treatments. For this, plasma samples from mice under five different treatments were analyzed (N=6 per group): Vehicle, CIA, CIA + Δ9-THCA-A (20 mg / kg), CIA + Δ9-THCA-A (20 mg / kg) + T0070907 (5 mg / kg) and CIA + Δ9-THCA-A (20 mg / kg) + SR141716A (5 mg / kg).
Project description:Despite recent progress in the treatment of rheumatoid arthritis (RA), many patients still fail to achieve remission or low disease activity. An imbalance between auto-reactive effector T cells (Teff) and regulatory T cells (Treg) may contribute to joint inflammation and damage in RA. Therefore, restoring this balance is a promising approach for the treatment of inflammatory arthritis. Accordingly, our group has previously shown that the combination of TGF-β-releasing microparticles (MP), rapamycin-releasing MP, and IL-2-releasing MP (TRI MP) can effectively increase the ratio of Tregs to Teff in vivo and provide disease protection in several preclinical models. In this study TRI MP was evaluated in the collagen-induced arthritis (CIA) model. Although this formulation has been tested previously in models of destructive inflammation and transplantation, this is the first model of autoimmunity for which this therapy has been applied. In this context, TRI MP effectively reduced arthritis incidence, the severity of arthritis scores, and bone erosion. The proposed mechanism of action includes not only reducing CD4+ T cell proliferation, but also expanding a regulatory population in the periphery soon after TRI MP administration. These changes were reflected in the CD4+ T cell population that infiltrated the paws at the onset of arthritis and were associated with a reduction of immune infiltrate and inflammatory myeloid cells in the paws. TRI MP administration also reduced the titer of collagen antibodies, however the contribution of this reduced titer to disease protection remains uncertain since there was no correlation between collagen antibody titer and arthritis score.
Project description:MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has been described in various disease states, including inflammatory autoimmune diseases. By using high-throughput microRNA profiling analysis, we identified a series of miRNAs dysregulated in local inflammatory lesions of human patients with autoimmune diseases, as well as their relevant mouse models such as CIA. We isolated joint samples pooled from six CIA mice or from six naM-CM-/ve control mice. Total RNA was extracted for the TaqManM-BM-. Low Density Assay v3.0
Project description:This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
Project description:A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainability of the oil adsorbed nanobiocomposite is also demonstrated here through its conversion into a bi-functional graphitic nanocarbon material via heat treatment. The approach highlights new avenues for converting bio-wastes into useful nanomaterials in scalable and inexpensive ways.
Project description:IntroductionGuselkumab, a novel interleukin-23p19 subunit monoclonal antibody, has been shown to effectively improve the diverse manifestations of active psoriatic arthritis (PsA) in two phase 3 trials (DISCOVER-1, DISCOVER-2). Serum concentrations of extracellular matrix (ECM) biomarkers at baseline and following treatment with guselkumab were evaluated in patients with active PsA, and the relationship of these biomarkers with baseline PsA characteristics and clinical response to guselkumab treatment was explored.MethodsSerum samples were collected at weeks 0, 4, 24, and 52 from a selected subset (N = 260) of the 739 biologic-naïve patients with PsA treated with guselkumab 100 mg every 4 or 8 weeks or placebo in DISCOVER-2. Demographically matched healthy controls (N = 76) were used for comparison. The samples were analyzed for ECM biomarkers associated with collagen degradation (C1M, C2M, C3M, C4M, C6M, C10C) and collagen formation (PRO-C1, PRO-C2, PRO-C3, PRO-C4, PRO-C6).ResultsBaseline concentrations of collagen degradation biomarkers C1M, C3M, C4M, and C6M and collagen formation biomarkers PRO-C3 and PRO-C6 were significantly higher (i.e., ≥ 1.25-fold and false discovery rate adjusted p < 0.05) in PsA patients than in healthy controls. Serum C1M, C3M, C4M, and C6M levels declined from baseline in guselkumab-treated patients in both dosing regimens. In addition, guselkumab-treated ACR20 responders (≥ 20% improvement in American College of Rhematology response criteria) had significantly lower C1M levels than ACR20 nonresponders.ConclusionThese data demonstrate that serum collagen biomarkers are elevated in patients with PsA compared with healthy controls and that treatment with guselkumab decreases levels of C1M, C3M, C4M, and C6M. Importantly, C1M serves as a biomarker that associates with improvement of joint signs and symptoms.Trial registrationClinicalTrials.gov identifier: NCT03158285.