Project description:Genome duplication is temporarily coordinated with sister chromatid cohesion and DNA damage tolerance. Recently, we found that replication fork-coupled repriming is important for both optimal cohesion and error-free replication by recombination. The mechanism involved has implications for the etiology of replication-based genetic diseases and cancer.
Project description:The dimeric transcription factor nuclear factor κB (NF-κB) functions broadly in coordinating cellular responses during inflammation and immune reactions, and its importance in the pathogenesis of cancer is increasingly recognized. Many of the signal transduction pathways that trigger activation of cytoplasmic NF-κB in response to a broad array of immune and inflammatory stimuli have been elaborated in great detail. NF-κB can also be activated by DNA damage, though relatively less is known about the signal transduction mechanisms that link DNA damage in the nucleus with activation of NF-κB in the cytoplasm. Here, we focus on the conserved signaling pathway that has emerged that promotes NF-κB activation following DNA damage. Post-translational modification of NF-κB essential modulator (NEMO) plays a central role in linking the cellular DNA damage response to NF-κB via the ataxia telangiectasia mutated (ATM) kinase. Accumulating evidence suggests that DNA damage-dependent NF-κB activation may play significant biological roles, particularly during lymphocyte differentiation and progression of human malignancies.
Project description:Mechanochemistry studies the effect of mechanical force on chemical bonds, bringing opportunities for synthesizing alloys, ceramics, organics, polymers, and biomaterials. A vital issue of applying macro-scale mechanical force to manipulate crystal structures is finding ways to precisely adjust the force directions to break micro-scale target chemical bonds. Inspired by a common technique of driving a wedge into the wood to make wood chopping much easier, a wedging strategy of splitting three-dimensional structured crystalline frameworks and then converting them to nanosheets was proposed, where specific molecules were wedged into crystalline frameworks to drive the directional transmission of mechanical force to break chemical bonds. As a result, various crystalline framework nanosheets including metal-organic framework nanosheets, covalent organic framework nanosheets, and coordination polymer nanosheets were fabricated. This wedging crystal strategy exhibits advantages of operability, flexibility and designability, and furthermore, it is expected to expand mechanochemistry applications in material preparation.
Project description:Inflammation and oxidative stress generate free radicals that oxidize guanine (G) in DNA to 8-oxo-7,8-dihydroguanine (OG), and this reaction is prominent in the G-rich telomere sequence. In telomeres, OG is not efficiently removed by repair pathways allowing its concentration to build, surprisingly without any immediate negative consequences to stability. Herein, OG was synthesized in five repeats of the human telomere sequence (TTAGGG)n, at the 5'-G of the 5'-most, middle, and 3'-most G tracks, representing hotspots for oxidation. These synthetic oligomers were folded in relevant amounts of K(+)/Na(+) to adopt hybrid G-quadruplex folds. The structural impact of OG was assayed by circular dichroism, thermal melting, (1)H NMR, and single-molecule profiling by the α-hemolysin nanopore. On the basis of these results, OG was well accommodated in the five-repeat sequences by looping out the damaged G track to allow the other four tracks to adopt a hybrid G-quadruplex. These results run counter to previous studies with OG in four-repeat telomere sequences that found OG to be highly destabilizing and causing significant reorientation of the fold. When taking a wider view of the human telomere sequence and considering additional repeats, we found OG to cause minimal impact on the structure. The plasticity of this repeat sequence addresses how OG concentrations can increase in telomeres without immediate telomere instability or attrition.
Project description:Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.
Project description:BAR proteins are involved in a variety of membrane remodeling events but how they can mold membranes into different shapes remains poorly understood. Using electron paramagnetic resonance, we find that vesicle binding of the N-BAR protein amphiphysin is predominantly mediated by the shallow insertion of amphipathic N-terminal helices. In contrast, the interaction with tubes involves deeply inserted N-terminal helices together with the concave surface of the BAR domain, which acts as a scaffold. Combined with the observed concentration dependence of tubulation and BAR domain scaffolding, the data indicate that initial membrane deformations and vesicle binding are mediated by insertion of amphipathic helical wedges, while tubulation requires high protein densities at which oligomeric BAR domain scaffolds form. In addition, we identify a pocket of residues on the concave surface of the BAR domain that insert deeply into tube membrane. Interestingly, this pocket harbors a number of disease mutants in the homologous amphiphysin 2.
Project description:DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.
Project description:The mechanisms underlying Golgi targeting and vesiculation are unknown, although the responsible phosphatidylinositol 4-phosphate (PtdIns(4)P) ligand and four-phosphate-adaptor protein (FAPP) modules have been defined. The micelle-bound structure of the FAPP1 pleckstrin homology domain reveals how its prominent wedge independently tubulates Golgi membranes by leaflet penetration. Mutations compromising the exposed hydrophobicity of full-length FAPP2 abolish lipid monolayer binding and compression. The trafficking process begins with an electrostatic approach, phosphoinositide sampling and perpendicular penetration. Extensive protein contacts with PtdIns(4)P and neighbouring phospholipids reshape the bilayer and initiate tubulation through a conserved wedge with features shared by diverse protein modules.
Project description:Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.
Project description:Cells engage sophisticated programs of DNA damage response (DDR) and repair to guard against genetic mutations. Although there is significant knowledge concerning DDR in interphase cells, much less is known about these processes in mitosis. Direct interaction between MDC1, a master DDR organizer, and a marker of DNA damage, histone γH2AX, is required to trigger robust repair. Here we show that the DNA damage-induced interaction between MDC1 and γH2AX is attenuated in mitosis. Furthermore, inhibition in the activity of the core mitotic regulator CDK1, either by pharmacologic inhibition or siRNA attenuation, enhances MDC1-γH2AX colocalization in mitosis. Our findings offer key new insights into how DDR is controlled during mitosis.