Project description:The discovery of microRNAs (miRNAs) is a remarkable breakthrough in the field of life science, and they are important actors which regulate gene expression in diverse cellular processes. Recently, several reports indicated that miRNAs can also target viruses and regulate virus replication. Here we discovered 36 pig-encoded miRNAs and 22 human-encoded miRNAs which have putative targets in swine influenza virus (SIV) and Swine-Origin 2009 A/H1N1 influenza virus (S-OIV) genes respectively. Interestingly, the putative interactions of ssc-miR-124a, ssc-miR-136 and ssc-miR-145 with their SIV target genes had been found to be maintained almost throughout all of the virus evolution. Enrichment analysis of previously reported miRNA gene expression profiles revealed that three miRNAs are expressed at higher levels in human lung or trachea tissue. The hsa-miR-145 and hsa-miR-92a putatively target the HA gene and hsa-miR-150 putatively targets the PB2 gene. Analysis results based on the location distribution from which virus was isolated and sequence conservation imply that some putative miRNA-mediated host-virus interactions may characterize the location-specificity.
Project description:Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. The recent flu pandemic caused by a swine-origin influenza virus A/H1N1 (S-OIV) presents an opportunity to examine virulence factors, the spread of the infection and to prepare for major influenza outbreaks in the future. The virus contains a novel constellation of gene segments, the nearest known precursors being viruses found in swine and it probably arose through reassortment of two viruses of swine origin. Specific markers for virulence can be evaluated in the viral genome, PB1-F2 is a molecular marker of pathogenicity but is not present in the new S-OIV. While attention was focused on a threat of an avian influenza H5N1 pandemic emerging from Asia, a novel influenza virus of swine origin emerged in North America, and is now spreading worldwide. However, S-OIV demonstrates that even serotypes already encountered in past human pandemics may constitute new pandemic threats. There are concerns that this virus may mutate or reassort with existing influenza viruses giving rise to more transmissible or more pathogenic viruses. The 1918 Spanish flu pandemic virus was relatively mild in its first wave and acquired more virulence when it returned in the winter. Thus preparedness on a global scale against a potential more virulent strain is highly recommended. Most isolates of the new S-OIVs are susceptible to neuraminidase inhibitors, and currently a vaccine against the pandemic strain is being manufactured and will be available this fall. This review summarizes the current information on the new pandemic swine-origin influenza virus A/H1N1.
Project description:The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating surveillance, research and commercial work with this virus, and maintaining a registry of all influenza isolates.
Project description:This study used virological, histological, immunological and global gene expression to compare the virlence of two newly emerged 2009 H1N1 isolates (A/Mexico/InDRE4487/2009 and A/Mexico/4108/2009) and current seasonal H1N1 influenza strain (A/Kawasaki/UTK-4/2009) in experimentally infected cynomolgus macaques. We showed that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia. Disease associated with these SOIV isolates was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain.
Project description:Host switch events of influenza A viruses (IAVs) continuously pose a zoonotic threat to humans. In 2013, swine-origin H1N1 IAVs emerged in dogs soon after they were detected in swine in the Guangxi province of China. This host switch was followed by multiple reassortment events between these H1N1 and previously circulating H3N2 canine IAVs (IAVs-C) in dogs. To evaluate the phenotype of these newly identified viruses, we characterized three swine-origin H1N1 IAVs-C and one reassortant H1N1 IAV-C. We found that H1N1 IAVs-C predominantly bound to human-type receptors, efficiently transmitted via direct contact in guinea pigs and replicated in human lung cells. Moreover, the swine-origin H1N1 IAVs-C were lethal in mice and were transmissible by respiratory droplets in guinea pigs. Importantly, sporadic human infections with these viruses have been detected, and preexisting immunity in humans might not be sufficient to prevent infections with these new viruses. Our results show the potential of H1N1 IAVs-C to infect and transmit in humans, suggesting that these viruses should be closely monitored in the future.
Project description:BackgroundIn April 2009, novel swine-origin influenza viruses (S-OIV) were identified in patients from Mexico and the United States. The viruses were genetically characterized as a novel influenza A (H1N1) strain originating in swine, and within a very short time the S-OIV strain spread across the globe via human-to-human contact.MethodologyWe conducted a comprehensive computational search of all available sequences of the surface proteins of H1N1 swine influenza isolates and found that a similar strain to S-OIV appeared in Thailand in 2000. The earlier isolates caused infections in pigs but only one sequenced human case, A/Thailand/271/2005 (H1N1).SignificanceDifferences between the Thai cases and S-OIV may help shed light on the ability of the current outbreak strain to spread rapidly among humans.
Project description:The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza "off-season," we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.
Project description:The swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more extensive virus replication occurring in the respiratory tract. Replication of seasonal A(H1N1) virus was confined to the nasal cavity of ferrets, but the 2009 A(H1N1) influenza virus also replicated in the trachea, bronchi, and bronchioles. Virus shedding was more abundant from the upper respiratory tract for 2009 A(H1N1) influenza virus as compared with seasonal virus, and transmission via aerosol or respiratory droplets was equally efficient. These data suggest that the 2009 A(H1N1) influenza virus has the ability to persist in the human population, potentially with more severe clinical consequences.
Project description:We analyzed the virus shedding of an oseltamivir-treated patient who had been infected with the pandemic swine-origin influenza A (H1N1) virus which had an oseltamivir-sensitive neuraminidase. The virus was isolated from the pharyngeal swabs of the patient using MDCK cells, and the virus genome RNA was detected in the same samples both by real-time RT-PCR and RT-PCR. The virus was isolated until 44 h after oseltamivir administration although the virus genome was detected until one day after oseltamivir treatment was stopped. Due to their high sensitivity, RT-PCR and real-time RT-PCR may cause misdiagnosis by detection of viral genome which does not infect, and classical virus isolation and clinical symptoms are recommended for the evaluation of oseltamivir treatment.
Project description:The first influenza pandemic of the new millennium was caused by a newly emerged swine-origin influenza virus (SOIV) (H1N1). This new virus is characterized by a previously unknown constellation of gene segments derived from North American and Eurasian swine lineages and the absence of common markers predictive of human adaptation. Overall, human infections appeared to be mild, but an alarming number of young individuals presented with symptoms atypical for seasonal influenza. The new SOIV also showed a sustained human-to-human transmissibility and higher reproduction ratio than common seasonal viruses, altogether indicating a higher pathogenic potential for this newly emerged virus. To study the virulence of the SOIV, we used a recently established cynomolgus macaque model and compared parameters of clinical disease, virology, host responses, and pathology/histopathology with a current seasonal H1N1 virus. We here show that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia that was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain. Unexpectedly, we observed heterogeneity among the two SOIV isolates in virus replication, host transcriptional and cytokine responses, and disease progression, demonstrating a higher pathogenic potential for A/Mexico/InDRE4487/2009. Differences in virulence may explain more severe disease, as was seen with certain individuals infected with the emerged pandemic influenza virus. Thus, the nonhuman primate model closely mimics influenza in humans.