Project description:The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α- NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor.
Project description:BackgroundNatural killer (NK) cells are an emerging new tool for cancer immunotherapy. To develop NK cell therapeutics from peripheral blood mononuclear cells (PBMCs) of healthy donors, substantial expansion of primary NK cells is necessary because of the very low number of these cells in peripheral blood. In this study, we aimed to investigate the effect of various cytokine alone or combinations, in expanded NK cells and to analyze the synergetic effect of cytokine combinations.MethodsHuman NK cells were isolated from healthy donor PBMC. Purified NK cells were stimulated with single cytokines or combinations of IL-2, IL-15, IL-18, and IL-27. The expanded NK cells were characterized by flow cytometry, cytotoxicity assay, calcein AM assay and Western blot.ResultsWe investigated the synergistic effects of each cytokine, namely, IL-2, IL-15, IL-18, and IL-27, on human NK cells isolated from PBMCs of healthy donors and cultured for 21 days. We identified that IL-15/IL-18/IL-27-mediated activation of NK cells most potently increased NK cell proliferation, cytotoxicity, and IFN-ɣ secretion compared with the activation observed with other treatments, including IL-2, IL-15, and IL-15/IL-18. Additionally, the expression of DNAM-1, NKG2D, CD69, and natural cytotoxicity receptors (NCRs; NKp30 and NKp44) increased on day 21 compared to that on day 0, demonstrating the activation of NK cells. In vitro, expanded NK cells were highly cytotoxic against cancer cells, displaying increased perforin and granzyme B accumulation.ConclusionsTaken together, these results indicated that IL-27 can synergize on NK cell expansion and activation with IL-15 and IL-18. In addition, we described an improved culture method for ex vivo expansion of human NK cells with IL-15/IL-18/IL-27 stimulation and characterized the response of NK cells to this stimulation.
Project description:In experimental arthritis, glucocorticoid secretion is inadequate relative to inflammation. We hypothesized that IL-1 is a key factor for inadequate glucocorticoid secretion in arthritic rats. Collagen type II-induced arthritis (CIA) in DA rats was the model to study effects of IL-1 on adrenal function. In the CIA model, an increase of intraadrenal MHCII-positive cells was observed. MHCII-positive cells or bone marrow-derived dendritic cells inhibited glucocorticoid secretion of adrenal gland cells. IL-1, but also IL-18 and the inflammasome were critical in glucocorticoid inhibition. Arthritic compared to control adrenal gland cells produced higher amounts of CXC chemokines from MHCII+ adrenal cells, particularly CINC-2, which is strongly dependent on presence of IL-1. In CIA, macrophages and/or dendritic cells inhibit glucocorticoid secretion via IL-1 in adrenal glands. These findings show that activated macrophages and/or dendritic cells inhibit glucocorticoid secretion in experimental arthritis and that IL-1β is a decisive factor.
Project description:Four accessory proteins (UreD, UreE, UreF, and UreG) are typically required to form the nickel-containing active site in the urease apoprotein (UreABC). Among the accessory proteins, UreD and UreF have been elusive targets for biochemical and structural characterization because they are not overproduced as soluble proteins. Using the best-studied urease system, in which the Klebsiella aerogenes genes are expressed in Escherichia coli, a translational fusion of ureE and ureF was generated. The UreEF fusion protein was overproduced as a soluble protein with a convenient tag involving the His-rich region of UreE. The fusion protein was able to form a UreD(EF)G-UreABC complex and to activate urease in vivo, and it interacted with UreD-UreABC in vitro to form a UreD(EF)-UreABC complex. While the UreF portion of UreEF is fully functional, the fusion significantly affected the role of the UreE portion by interrupting its dimerization and altering its metal binding properties compared to those of the wild-type UreE. Analysis of a series of UreEF deletion mutants revealed that the C terminus of UreF is required to form the UreD(EF)G-UreABC complex, while the N terminus of UreF is essential for activation of urease.
Project description:IntroductionThere has been no report in the literature of a soluble form of interleukin (IL)-18 receptor α (IL-18Rα). In this study, we evaluated the levels and characteristics of soluble IL-18Rα (sIL-18Rα) in the sera of patients with rheumatoid arthritis (RA) and compared these results to control populations.MethodsThe sIL-18Rα complex was isolated from pooled human blood serum using an anti-IL-18Rα monoclonal antibody affinity column. The purified sIL-18Rα was then examined using Western blot analysis and used in experiments to evaluate the effects on an IL-18-responsive natural killer (NK) human cell line, NK0. An enzyme-linked immunosorbent assay was developed, and sera from 145 patients with RA, 6 patients with adult-onset Still's disease, 31 patients with osteoarthritis (OA), 39 patients with systemic lupus erythematosus (SLE) and 67 controls were tested, along with levels of immunoglobulin M, rheumatoid factor, anticyclic citrullinated peptide antibody, IL-18, IL-13 and interferon (IFN)-γ. Area under the receiver operating characteristic curve (ROC-AUC) analysis was used to evaluate the diagnostic utility of the sIL-18Rα complex.ResultsThe isolated sIL-18Rα complex can be associated with IL-18 and the soluble form of the IL-18Rβ chain. The sIL-18Rα complex bound to the surface to the NK0 cell line, antagonized the stimulatory effects of IL-18 and IL-2 on the NK0 cell line and inhibited IFN-γ production by the cells. The serum levels of sIL-18Rα complex in RA (186.0 ± 33.5 ng/mL, n = 145) and adult-onset Still's disease (98.2 ± 8.9 ng/mL, n = 6) were significantly (P < 0.001) higher than those in the healthy controls (52.3 ± 8.5 ng/mL, n = 67), OA (38.6 ± 5.4 ng/mL, n = 31), SLE (44.6 ± 3.2 ng/mL, n = 39). The serum level of sIL-18Rα complex was not significantly different between RA and adult-onset Still's disease patients. The serum levels of IL-18, IL-13 and IFN-γ in the RA patients were significantly (P < 0.01) higher than in OA and SLE patients as well as healthy controls. ROC-AUC analysis of the serum concentration of sIL-18Rα indicated that it was significantly diagnostic of RA. Moreover, a tumor necrosis factor inhibitor, etanercept, significantly (P < 0.0001) decreased levels of sIL-18Rα in the sera of 29 RA patients 6 months after treatment.ConclusionsThe sIL-18Rα complex could be a potentially useful biomarker for the diagnosis of RA.
Project description:We used Affymetrix expression arrays to determine changes in gene expression associated with activation of human NK cells mediated through treatment with cytokines IL-2, IL-12 and IL-18 over a 24 hour period. Human natural killer cells were isolated via negative selection from PBMCs of healthy donors. Cells were found to be > 95% CD3-CD56+. RNA was harvested at time of isolation or after 24 hour stimulation from 8 x 10^6 cells per condition. For stimulations, cells were incubated at 37C (5% CO2) in RPMI, suuplemented with 10% Fetal Bovine Serum at 1.5 x 10^6 cells/ml. Cytokine stimualtions were conducted with IL-2 (100U/mL), IL-12 (10ng/mL) and IL-18 (100ng/mL) from 2 male donors (N = 4). Expression analysis was carried out to determine transcriptional changes associated with 24 hr stimulation relative to freshly isolated cells.
Project description:We used Affymetrix expression arrays to determine changes in gene expression associated with activation of human NK cells mediated through treatment with cytokines IL-2, IL-12 and IL-18 over a 24 hour period.
Project description:BACKGROUNDNK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.METHODSThe novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination.RESULTSWe show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10.CONCLUSIONThis study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein.TRIAL REGISTRATIONClinicalTrials.gov NCT02313077.FUNDINGUnited Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).
Project description:Uncontrolled secretion of mature interleukin (IL)-1β and IL-18 is responsible for severe autoinflammatory or autoimmune disorders and various allergic diseases. Here we report an intramolecular interaction between IL-18 and its propeptide, which is proteolytically removed from its precursor proIL-18 during maturation. The intramolecular interaction was recapitulated intermolecularly using recombinant propeptide. These results suggest the possibility of developing a novel class of peptide-based IL-18 inhibitors that could serve as therapeutic agents for IL-18-related inflammatory diseases.
Project description:Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.