Ontology highlight
ABSTRACT: Rationale
The multiligand RAGE (receptor for advanced glycation end products) contributes to atherosclerosis in apolipoprotein (Apo)E-null mice.Objective
To delineate the specific mechanisms by which RAGE accelerated atherosclerosis, we performed Affymetrix gene expression arrays on aortas of nondiabetic and diabetic ApoE-null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis.Methods and results
We report that there is very little overlap of the genes that are differentially expressed both in the onset of diabetes in ApoE-null mice, and in the effect of RAGE deletion in diabetic ApoE-null mice. Pathway-Express analysis revealed that the transforming growth factor-beta pathway and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE-null mice, and the mechanism by which deletion of RAGE ameliorates this effect. Quantitative polymerase chain reaction studies, Western blotting, and confocal microscopy in aortic tissue and in primary cultures of murine aortic smooth muscle cells supported these findings.Conclusions
Taken together, our work suggests that RAGE-dependent acceleration of atherosclerosis in ApoE-null mice is dependent, at least in part, on the action of the ROCK1 (rho-associated protein kinase 1) branch of the transforming growth factor-beta pathway.
SUBMITTER: Bu DX
PROVIDER: S-EPMC2848909 | biostudies-literature | 2010 Apr
REPOSITORIES: biostudies-literature

Bu De-xiu DX Rai Vivek V Shen Xiaoping X Rosario Rosa R Lu Yan Y D'Agati Vivette V Yan Shi Fang SF Friedman Richard A RA Nuglozeh Edem E Schmidt Ann Marie AM
Circulation research 20100204 6
<h4>Rationale</h4>The multiligand RAGE (receptor for advanced glycation end products) contributes to atherosclerosis in apolipoprotein (Apo)E-null mice.<h4>Objective</h4>To delineate the specific mechanisms by which RAGE accelerated atherosclerosis, we performed Affymetrix gene expression arrays on aortas of nondiabetic and diabetic ApoE-null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, bu ...[more]