Project description:BackgroundThere are three turkey β-adrenoceptors: the original turkey β-adrenoceptor from erythrocytes (tβtrunc, for which the X-ray crystal structure has recently been determined), tβ3C and tβ4C-receptors. This study examined the similarities and differences between these avian receptors and mammalian receptors with regards to binding characteristics and functional high and low affinity agonist conformations.Methodology/principal findingsStable cell lines were constructed with each of the turkey β-adrenoceptors and 3H-CGP12177 whole cell binding, CRE-SPAP production and (3)H-cAMP accumulation assays performed. It was confirmed that the three turkey β-adrenoceptors are distinct from each other in terms of amino acid sequence and binding characteristics. The greatest similarity of any of the turkey β-adrenoceptors to human β-adrenoceptors is between the turkey β3C-receptor and the human β2-adrenoceptor. There are pharmacologically distinct differences between the binding of ligands for the tβtrunc and tβ4C and the human β-adrenoceptors (e.g. with CGP20712A and ICI118551). The tβtrunc and tβ4C-adrenoceptors appear to exist in at least two different agonist conformations in a similar manner to that seen at both the human and rat β1-adrenoceptor and human β3-adrenoceptors. The tβ3C-receptor, similar to the human β2-adrenoceptor, does not, at least so far, appear to exist in more than one agonist conformation.Conclusions/significanceThere are several similarities, but also several important differences, between the recently crystallised turkey β-adrenoceptor and the human β-adrenoceptors. These findings are important for those the field of drug discovery using the recently structural information from crystallised receptors to aid drug design. Furthermore, comparison of the amino-acid sequence for the turkey and human adrenoceptors may therefore shed more light on the residues involved in the existence of the secondary β-adrenoceptor conformation.
Project description:Stress plays a role in tumourigenesis through catecholamines acting at β-adrenoceptors including β1 -, β2 - and β3 -adrenoceptors, and the use of β-adrenoceptor antagonists seems to counteract tumour growth and progression. Preclinical evidence and meta-analysis data demonstrate that melanoma shows a positive response to β-adrenoceptor blockers and in particular to propranolol acting mainly at β1 - and β2 -adrenoceptors. Although evidence suggesting that β3 -adrenoceptors may play a role as a therapeutic target in infantile haemangiomas has been recently reviewed, a comprehensive analysis of the data available from preclinical studies supporting a possible role of β3 -adrenoceptors in melanoma was not available. Here, we review data from the literature demonstrating that propranolol may be effective at counteracting melanoma growth, and we provide preclinical evidence that β3 -adrenoceptors may also play a role in the pathophysiology of melanoma, thus opening the door for further clinical assays trying to explore β3 -adrenoceptor blockers as novel alternatives for its treatment. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Project description:Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β1-adrenoceptors, arrestin-biased signalling via β2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through β2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the β-adrenoceptor system.
Project description:Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization.
Project description:β-adrenergic receptors (β-ARs) play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO) at the dose of 0.25 mg·kg(-1)·d(-1) for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB) is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR), a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.
Project description:1. This study examines beta(1)-, beta(2)- and beta(3)-adrenoceptor (AR)-mediated responses, mRNA levels and radioligand binding in ileum from beta(3)-AR knock-out (-/-) (KO) and wild type (+/+) (FVB) mice. 2. In KO and FVB mice, SR59230A (100 nM) (beta(3)-AR antagonist) antagonized responses to (-)-isoprenaline in both KO and FVB mice. (-)-Isoprenaline mediated relaxation of ileum was antagonized weakly by ICI118551 (100 nM) (beta(2)-AR antagonist). Responses to (-)-isoprenaline were more strongly antagonized by CGP20712A (100 nM) (beta(1)-AR antagonist), propranolol (1 microM) (beta(1)-/beta(2)-AR antagonist), carvedilol (100 nM) (non-specific beta-AR antagonist), and CGP12177A (100 nM) (beta(1)-/beta(2)-AR antagonist) in ileum from KO than in FVB mice. 3. Responses to CL316243 (beta(3)-AR agonist) in ileum from FVB mice were antagonized by SR59230A (100 nM) but not by propranolol (1 microM) or carvedilol (100 nM). CL316243 was ineffective in relaxing ileum from KO mice. 4. CGP12177A had no agonist actions in ileum from either KO or FVB mice. 5. beta(1)-AR mRNA levels were increased 3 fold in ileum from KO compared to FVB mice. This was associated with an increased maximum number of beta(1)-/beta(2)-AR binding sites (B(max)). beta(2)-AR mRNA levels were unaffected while no beta(3)-AR mRNA was detected in KO mice. 6. In mouse ileum, beta(3)-ARs and to a lesser extent beta(1)-ARs are the predominant adrenoceptor subtypes mediating relaxation in ileum from FVB mice. In KO mice beta(1)-ARs functionally compensate for the lack of beta(3)-ARs, and this is associated with increased beta(1)-AR mRNA and levels of binding.
Project description:The beta(2)-adrenoceptor (beta(2)AR) was one of the first Family A G protein-coupled receptors (GPCRs) shown to form oligomers in cellular membranes, yet we still know little about the number and arrangement of protomers in oligomers, the influence of ligands on the organization or stability of oligomers, or the requirement for other proteins to promote oligomerization. We used fluorescence resonance energy transfer (FRET) to characterize the oligomerization of purified beta(2)AR site-specifically labelled at three different positions with fluorophores and reconstituted into a model lipid bilayer. Our results suggest that the beta(2)AR is predominantly tetrameric following reconstitution into phospholipid vesicles. Agonists and antagonists have little effect on the relative orientation of protomers in oligomeric complexes. In contrast, binding of inverse agonists leads to significant increases in FRET efficiencies for most labelling pairs, suggesting that this class of ligand promotes tighter packing of protomers and/or the formation of more complex oligomers by reducing conformational fluctuations in individual protomers. The results provide new structural insights into beta(2)AR oligomerization and suggest a possible mechanism for the functional effects of inverse agonists.
Project description:Background and purposeThe role of beta-adrenoceptors in heart disease remains controversial. Although beta-blockers ameliorate the progression of heart disease, the mechanism remains undefined. We investigated the effect of beta-adrenoceptors on cardiac hypertrophic growth using beta(1)- and beta(2)-adrenoreceptor knockout and wild-type (WT) mice.Experimental approachMice were subjected to aortic banding or sham surgery, and their cardiac function was determined by echocardiography and micromanometry.Key resultsAt 4 and 12 weeks after aortic banding, the left ventricle:body mass ratio was increased by 80-87% in wild-type mice, but only by 15% in knockouts, relative to sham-operated groups. Despite the blunted hypertrophic growth, ventricular function in knockouts was maintained. WT mice responded to pressure overload with up-regulation of gene expression of inflammatory cytokines and fibrogenic growth factors, and with severe cardiac fibrosis. All these effects were absent in the knockout animals.Conclusion and implicationsOur findings of a markedly attenuated cardiac hypertrophy and fibrosis following pressure overload in this knockout model emphasize that beta-adrenoceptor signalling plays a central role in cardiac hypertrophy and maladaptation following pressure overload.