Project description:Norepinephrine (NE) neurons in the locus coeruleus (LC) play key roles in modulating sleep and wakefulness. Recent studies have revealed that the paraventricular thalamic nucleus (PVT) is a critical wakefulness-controlling nucleus in mice. However, the effects of NE on PVT neurons remain largely unknown. Here, we investigated the mechanisms of NE modulating wakefulness in the PVT by using viral tracing, behavioral tests, slice electrophysiology, and optogenetics techniques. We found that the PVT-projecting LC neurons had few collateral projections to other brain nuclei. Behavioral tests showed that specific activation of the LC-PVT projections or microinjection of NE into the PVT accelerated emergence from general anesthesia and enhanced locomotion activity. Moreover, brain slice recording results indicated that NE increased the activity of the PVT neurons mainly by increasing the frequency of spontaneous excitatory postsynaptic currents via α1 adrenoceptors. Thus, our results demonstrate that NE modulates wakefulness via α1 adrenoceptors in the PVT.
Project description:As heart failure (HF) is a devastating health problem worldwide, a better understanding and the development of more effective therapeutic approaches are required. HF is characterized by sympathetic system activation which stimulates α- and β-adrenoceptors (ARs). The exposure of the cardiovascular system to the increased locally released and circulating levels of catecholamines leads to a well-described downregulation and desensitization of β-ARs. However, information on the role of α-AR is limited. We have performed a systematic literature review examining the role of both cardiac and vascular α1-ARs in HF using 5 databases for our search. All three α1-AR subtypes (α1A, α1B and α1D) are expressed in human and animal hearts and blood vessels in a tissue-dependent manner. We summarize the changes observed in HF regarding the density, signaling and responses of α1-ARs. Conflicting findings arise from different studies concerning the influence that HF has on α1-AR expression and function; in contrast to β-ARs there is no consistent evidence for down-regulation or desensitization of cardiac or vascular α1-ARs. Whether α1-ARs are a therapeutic target in HF remains a matter of debate.
Project description:α2-adrenoceptors, (α2A, α2B and α2C-subtypes), are Gi-coupled receptors. Central activation of brain α2A and α2C-adrenoceptors is the main site for α2-agonist mediated clinical responses in hypertension, ADHD, muscle spasm and ITU management of sedation, reduction in opiate requirements, nausea and delirium. However, despite having the same Gi-potency in functional assays, some α2-agonists also stimulate Gs-responses whilst others do not. This was investigated. Agonist responses to 49 different α-agonists were studied (CRE-gene transcription, cAMP, ERK1/2-phosphorylation and binding affinity) in CHO cells stably expressing the human α2A, α2B or α2C-adrenoceptor, enabling ligand intrinsic efficacy to be determined (binding KD /Gi-IC50 ). Ligands with high intrinsic efficacy (e.g., brimonidine and moxonidine at α2A) stimulated biphasic (Gi-Gs) concentration responses, however for ligands with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi-only). ERK1/2-phosphorylation responses appeared to be Gi-mediated. For Gs-mediated responses to be observed, both a system with high receptor reserve and high agonist intrinsic efficacy were required. From the Gi-mediated efficacy ratio, the degree of Gs-coupling could be predicted. The clinical relevance and precise receptor conformational changes that occur, given the structural diversity of compounds with high intrinsic efficacy, remains to be determined. Comparison with α1 and β1/β2-adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g., α2:dexmedetomidine, α1:A61603) whilst e.g., oxymetazoline had high affinity for both α2A and α1A-subtypes, compared to all others. Some compounds had subclass selectivity due to selective intrinsic efficacy (e.g., α2:brimonidine, α1:methoxamine/etilefrine). A detailed knowledge of these agonist characteristics is vital for improving computer-based deep-learning and drug design.
Project description:α2-Adrenoceptors, subdivided into α2A, α2B, and α2C subtypes and expressed in heart, blood vessels, kidney, platelets and brain, are important for blood pressure, sedation, analgesia, and platelet aggregation. Brain α2C-adrenoceptor blockade has also been suggested to be beneficial for antipsychotic action. However, comparing α2-adrenoceptor subtype affinity is difficult due to significant species and methodology differences in published studies. Here, 3 H-rauwolscine whole cell binding was used to determine the affinity and selectivity of 99 α-antagonists (including antidepressants and antipsychotics) in CHO cells expressing human α2A, α2B, or α2C-adrenoceptors, using an identical method to β and α1-adrenoceptor measurements, thus allowing direct human receptor comparisons. Yohimbine, RX821002, RS79948, and atipamezole are high affinity non-selective α2-antagonists. BRL44408 was the most α2A-selective antagonist, although its α1A-affinity (81 nM) is only 9-fold greater than its α2C-affinity. MK-912 is the highest-affinity, most α2C-selective antagonist (0.15 nM α2C-affinity) although its α2C-selectivity is only 13-fold greater than at α2A. There are no truely α2B-selective antagonists. A few α-ligands with significant β-affinity were detected, for example, naftopidil where its clinical α1A-affinity is only 3-fold greater than off-target β2-affinity. Antidepressants (except mirtazapine) and first-generation antipsychotics have higher α1A than α2-adrenoceptor affinity but poor β-affinity. Second-generation antipsychotics varied widely in their α2-adrenoceptor affinity. Risperidone (9 nM) and paliperidone (14 nM) have the highest α2C-adrenoceptor affinity however this is only 5-fold selective over α2A, and both have a higher affinity for α1A (2 nM and 4 nM, respectively). So, despite a century of yohimbine use, and decades of α2-subtype studies, there remains plenty of scope to develop α2-subtype selective antagonists.
Project description:BackgroundThere are three turkey β-adrenoceptors: the original turkey β-adrenoceptor from erythrocytes (tβtrunc, for which the X-ray crystal structure has recently been determined), tβ3C and tβ4C-receptors. This study examined the similarities and differences between these avian receptors and mammalian receptors with regards to binding characteristics and functional high and low affinity agonist conformations.Methodology/principal findingsStable cell lines were constructed with each of the turkey β-adrenoceptors and 3H-CGP12177 whole cell binding, CRE-SPAP production and (3)H-cAMP accumulation assays performed. It was confirmed that the three turkey β-adrenoceptors are distinct from each other in terms of amino acid sequence and binding characteristics. The greatest similarity of any of the turkey β-adrenoceptors to human β-adrenoceptors is between the turkey β3C-receptor and the human β2-adrenoceptor. There are pharmacologically distinct differences between the binding of ligands for the tβtrunc and tβ4C and the human β-adrenoceptors (e.g. with CGP20712A and ICI118551). The tβtrunc and tβ4C-adrenoceptors appear to exist in at least two different agonist conformations in a similar manner to that seen at both the human and rat β1-adrenoceptor and human β3-adrenoceptors. The tβ3C-receptor, similar to the human β2-adrenoceptor, does not, at least so far, appear to exist in more than one agonist conformation.Conclusions/significanceThere are several similarities, but also several important differences, between the recently crystallised turkey β-adrenoceptor and the human β-adrenoceptors. These findings are important for those the field of drug discovery using the recently structural information from crystallised receptors to aid drug design. Furthermore, comparison of the amino-acid sequence for the turkey and human adrenoceptors may therefore shed more light on the residues involved in the existence of the secondary β-adrenoceptor conformation.
Project description:Background and purposeIntact endothelium plays a pivotal role in post-ischaemic angiogenesis. It is a phenomenon finely tuned by activation and inhibition of several endothelial receptors. The presence of alpha(1)-adrenoceptors on the endothelium suggests that these receptors may participate in regenerative phenomena by regulating the responses of endothelial cells involved in neo-angiogenesis.Experimental approachWe evaluated the expression of the subtypes of the alpha(1)-adrenoceptor in isolated endothelial cells harvested from Wistar-Kyoto (WKY) rats. We explored the possibility these alpha(1)-adrenoceptors may influence the pro-angiogenic phenotype of endothelial cells in vitro. In vivo, we used a model of hindlimb ischaemia in WKY rats, to assess the effects of alpha(1) adrenoceptor agonist or antagonist on angiogenesis in the ischaemic hindlimb by laser Doppler blood flow measurements, digital angiographies, hindlimb perfusion with dyed beads and histological evaluation.Key resultsIn vitro, pharmacological antagonism of alpha(1)-adrenoceptors in endothelial cells from WKY rats by doxazosin enhanced, while stimulation of these adrenoceptors with phenylephrine, inhibited endothelial cell proliferation and DNA synthesis, ERK and retinoblastoma protein (Rb) phosphorylation, cell migration and tubule formation. In vivo, we found increased alpha(1)-adrenoceptor density in the ischaemic hindlimb, compared to non-ischaemic hindlimb, suggesting an enhanced alpha(1)-adrenoceptor tone in the ischaemic tissue. Treatment with doxazosin (0.06 mg kg(-1) day(-1) for 14 days) did not alter systemic blood pressure but enhanced neo-angiogenesis in the ischaemic hindlimb, as measured by all our assays.ConclusionsOur findings support the hypothesis that the alpha(1)-adrenoceptors in endothelial cells provide a negative regulation of angiogenesis.