Project description:BackgroundThe gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism.Scope of reviewIn this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery.Major conclusionsIn recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Project description:We utilized single cell sequencing of FACS sorted cells from pancreatic islets of wildtype and ghrelin knock out mice to understand the effects of ghrelin deletion on gene expression profiles of various islet cells.
Project description:The objective of this study was to evaluate leptin, ghrelin, and leptin/ghrelin ratio in critically ill patients and association of leptin/ghrelin ratio with outcomes. This is a sub-study of the PermiT trial (ISRCTN68144998). A subset of 72 patients who were expected to stay >14 days in the Intensive care unit were enrolled. Blood samples were collected on days 1, 3, 5, 7, and 14. Samples were analyzed for leptin and active ghrelin in addition to other hormones. Baseline leptin/ghrelin ratio was calculated, and patients were stratified into low and high leptin/ghrelin ratio based on the median value of 236. There was a considerable variation in baseline leptin level: Median 5.22 ng/mL (Q1, Q3: 1.26, 17.60). Ghrelin level was generally low: 10.61 pg/mL (Q1, Q3: 8.62, 25.36). Patients with high leptin/ghrelin ratio compared to patients with low leptin/ghrelin ratio were older, had higher body mass index and more likely to be diabetic. There were no differences in leptin/ghrelin ratio between patients who received permissive underfeeding and standard feeding. Multivariable logistic regression analysis showed that age and body mass index were significant independent predictors of high leptin-ghrelin ratio. Leptin-ghrelin ratio was not associated with 90-day mortality or other outcomes. Age and body mass index are predictors of high leptin/ghrelin ratio. Leptin/ghrelin ratio is not affected by permissive underfeeding and is not associated with mortality.
Project description:Background/aimsThe gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.MethodsThe authors measured food intake, gastric emptying, c-Fos expression in the hypothalamus, and gene expression of hypothalamic neuropeptides in mice after administration of desacyl ghrelin. To explore the effects of long term overexpression of desacyl ghrelin, transgenic mice that overexpressed desacyl ghrelin were created.ResultsAdministration of desacyl ghrelin decreased food intake and gastric emptying rate through an action on the paraventricular nucleus and the arcuate nucleus in the hypothalamus. Gene expression of anorexigenic cocaine and amphetamine regulated transcript and urocortin in the hypothalamus was increased by desacyl ghrelin. Desacyl ghrelin overexpressing mice exhibited a decrease in body weight, food intake, and fat pad mass weight accompanied by moderately decreased linear growth. Gastric emptying was also decreased in desacyl ghrelin overexpressing mice.ConclusionsThese findings indicate that in contrast to acylated ghrelin, desacyl ghrelin induces a negative energy balance by decreasing food intake and delaying gastric emptying. The effect is mediated via the hypothalamus. Although derived from the same precursor, the inverse effects of these two peptides suggest that the stomach might be involved as an endocrine organ in the regulation of the energy balance.
Project description:The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer.
Project description:Ghrelin is a peptide hormone with many known functions, including orexigenic, blood glucose-regulatory, and antidepressant actions, among others. Mature ghrelin is unique in that it is the only known naturally occurring peptide to be posttranslationally modified by O-acylation with octanoate. This acylation is required for many of ghrelin's actions, including its effects on promoting increases in food intake and body weight. GOAT (ghrelin O-acyltransferase), one of 16 members of the MBOAT family of membrane-bound O-acyltransferases, has recently been identified as the enzyme responsible for catalyzing the addition of the octanoyl group to ghrelin. Although the initial reports of GOAT have localized its encoding mRNA to tissues known to contain ghrelin, it is as yet unclear whether the octanoylation occurs within ghrelin-producing cells or in neighboring cells. Here, we have performed dual-label histochemical analysis on mouse stomach sections and quantitative PCR on mRNAs from highly enriched pools of mouse gastric ghrelin cells to demonstrate a high degree of GOAT mRNA expression within ghrelin-producing cells of the gastric oxyntic mucosa. We also demonstrate that GOAT is the only member of the MBOAT family whose expression is highly enriched within gastric ghrelin cells and whose whole body distribution mirrors that of ghrelin.
Project description:Ghrelin O-acyl transferase (GOAT) is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.
Project description:Ghrelin is a gastric peptide hormone with important physiological functions. The unique feature of ghrelin is its Serine 3 acyl-modification, which is essential for ghrelin's activity. However, it remains to be elucidated why the acyl-modification of ghrelin is necessary for activity. To address these questions, we solved the crystal structure of the ghrelin receptor bound to antagonist. The ligand-binding pocket of the ghrelin receptor is bifurcated by a salt bridge between E124 and R283. A striking feature of the ligand-binding pocket of the ghrelin receptor is a wide gap (crevasse) between the TM6 and TM7 bundles that is rich in hydrophobic amino acids, including a cluster of phenylalanine residues. Mutagenesis analyses suggest that the interaction between the gap structure and the acyl acid moiety of ghrelin may participate in transforming the ghrelin receptor into an active conformation.
Project description:Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with anti-atrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia.
Project description:Ghrelin is a unique fatty acid-modified peptide hormone produced in the stomach and has important roles in energy homeostasis and gastrointestinal motility. However, the medium-chain fatty acid source for ghrelin acyl-modification is not known. We found that a fat-free diet and the removal of intestinal microbiota did not decrease acyl-ghrelin production in the stomach or plasma acyl-ghrelin levels in mice. RT-PCR analysis showed that genes involving fatty acid synthesis, metabolism, and transport were expressed in pancreas-derived ghrelinoma (PG-1) cells. Treatment with an irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) strongly decreased acylated ghrelin levels but did not affect ghrelin or ghrelin o-acyl transferase (GOAT) mRNA levels in PG-1 cells. Our results suggest that the medium-chain fatty acid used for the acyl-modification of ghrelin is produced in ghrelin-producing cells themselves by β-oxidation of long-chain fatty acids provided from the circulation.