Project description:It has been reported that 5-hydroxytryptamine (5-HT) is related to melanogenesis in mice and melanoma cells. However, the underlying mechanisms of 5-HT in regulating pigmentation remains unknown. In this study, we aim to clarify the regulatory mechanism of 5-HT in the pigmentation of zebrafish embryos and B16F10 cells. Our results show that 5-HT induces the pigmentation of zebrafish embryos in a dosage-dependent manner at concentrations of 0.01-1 mM. Whole mount in situ hybridizations and qRT-PCR in zebrafish embryos indicate that the expression of neural crest cells marker gene sox10 is not changed in embryos treated with 5-HT compared to control group. The expression of mitfa, the marker gene of melanoblasts, is increased in the presence of 5-HT. Furthermore, 5-HT increased the expression of regeneration associated genes, namely kita, mitfa, and dct, after ablation of the melanogenic cells in zebrafish embryos. The experiments in B16F10 cells show that 5-HT promotes melanin synthesis by up-regulating the expression of key proteins MITF, TYR, TRP-1, and TRP-2. Especially, the small molecule inhibitor of PKA signaling, but not AKT and MAPK signaling, attenuates the up-regulation of MITF and TYR resulted from 5-HT induction in B16F10 cells. These results will help us to further understand the regulatory network of vertebrate pigmentation.
Project description:The 5-HT6R has been considered as an attractive therapeutic target in the brain due to its exclusive expression in the brain. However, the mechanistic linkage between 5-HT6Rs and brain functions remains poorly understood. Here, we examined the effects of 5-HT6R-mediated cell morphological changes using immunocytochemistry, Western blot, and live-cell imaging assays. Our results showed that the activation of 5-HT6Rs caused morphological changes and increased cell surface area in HEK293 cells expressing 5-HT6Rs. Treatment with 5-HT specifically increased RhoA-GTP activity without affecting other Rho family proteins, such as Rac1 and Cdc42. Furthermore, live-cell imaging in hippocampal neurons revealed that activation of 5-HT6Rs using a selective agonist, ST1936, increased the density and size of dendritic protrusions along with the activation of RhoA-GTP activity and that both effects were blocked by pretreatment with a selective 5-HT6R antagonist, SB258585. Taken together, our results show that 5-HT6R plays an important role in the regulation of cell morphology via a RhoA-dependent pathway in mammalian cell lines and primary neurons.
Project description:Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10-9 M to 10-5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP.
Project description:Background5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F).MethodsUtilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release.Results5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition.ConclusionThis study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.
Project description:At present the most investigated 5-HT receptor that has been shown to play a role in the control of micturition is the 5-HT(1A) receptor followed by 5-HT(7), 5-HT(2) and 5-HT(3) receptors. Most experiments focus on the control these receptors have on the parasympathetic outflow to the bladder and the somatic outflow to the external urethral sphincter (EUS) in the rat. Furthermore, 5-HT(1A) and 5-HT(7) receptors have been identified as having an excitatory physiological role in the control of bladder function. 5-HT(1A) receptors act, at least in the rat, at both a spinal (probably a heteroreceptor) and supraspinal (probably an autoreceptor) level, while 5-HT(7) receptors only act at a supraspinal level. Additionally, in the rat, 5-HT administered at a spinal or supraspinal site has an excitatory action, although earlier experiments have shown that activating 5-HT-containing brain areas causes inhibition of the bladder. Recent experiments have also indicated that blockade of the 5-HT(1A) receptor pathway shows rapid tolerance. However, no data exist for the development of tolerance for the 5-HT(7) receptor pathway. Neither receptor seems to play a role in the control of the urethra. Regarding 5-HT(2) receptors, activation of this receptor subtype inhibits micturition, and this inhibitory action may occur at a spinal, supraspinal or both levels. Although no physiological role for 5-HT(2C) receptors can yet be identified, 5-HT(2C) receptors have been implicated in the proposed supraspinal tonically active 5-HT(1A) autoreceptor (negative feedback) pathway. This proposition reconciles the data that central 5-HT-containing pathways are inhibitory to micturition, while 5-HT(1A) receptors, although inhibitory to adenylyl cyclase, have an excitatory function. This is because activation of 5-HT(1A) autoreceptors reduces the release of 5-HT thus reducing the activation of the 5-HT(2C) receptors, which are inhibitory in the control of micturition (disinhibition). Furthermore, 5-HT(2A) receptors in the rat and 5-HT(2C) receptors in the guinea pig cause activation of the EUS. In this respect, 5-ht(5A) receptors have also been identified in Onuf's nucleus, the site of somatic motoneurones controlling this sphincter. In the cat there is very little evidence to indicate that 5-HT receptors are involved in micturition except under pathological conditions in which activation of 5-HT(1A) receptors causes inhibition of micturition. Interestingly, under such conditions 5-HT(1A) receptors cause excitation of the EUS. Nevertheless, spinal 5HT(3) receptors have been implicated in the physiological control of micturition in the cat, but not yet in the rat. Overall, the data support the view that 5-HT receptors are important in the control of micturition. However, many more studies are required to fully understand these roles and why there are such species differences.
Project description:Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors.
Project description:Mitochondrial dysfunction is both a cause and target of reactive oxygen species during ischemia-reperfusion, drug, and toxicant injury. After injury, renal proximal tubular cells (RPTC) recover mitochondrial function by increasing the expression of the master regulator of mitochondrial biogenesis, peroxisome-proliferator-activated-receptor-gamma-coactivator-1alpha (PGC-1alpha). The goal of this study was to determine whether 5-hydroxytryptamine (5-HT) receptor agonists increase mitochondrial biogenesis and accelerate the recovery of mitochondrial function. Reverse transcription-polymerase chain reaction analysis confirmed the presence of 5-HT2A, 5-HT2B, and 5-HT2C receptor mRNA in RPTC. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 3-10 microM) increased PGC-1alpha levels, expression of mitochondrial proteins ATP synthase beta and NADH dehydrogenase (ubiquinone) 1beta subcomplex 8 (NDUFB8), MitoTracker Red staining intensity, cellular respiration, and ATP levels through a 5-HT receptor and PGC-1alpha-dependent pathway. Similar effects were observed with the 5-HT2 agonist m-chlorophenylpiperazine and were blocked by the 5-HT2 antagonist 8-[3-(4-fluorophenoxy) propyl]-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one (AMI-193). In addition, DOI accelerated the recovery of mitochondrial function after oxidant-induced injury in RPTC. This is the first report to demonstrate 5-HT receptor-mediated mitochondrial biogenesis, and we suggest that 5-HT-agonists may be effective in the treatment of mitochondrial and cell injury.
Project description:BackgroundTardive dyskinesia (TD) is a common side effect of antipsychotic treatment. This movement disorder consists of orofacial and limb-truncal components. The present study is aimed at investigating the role of serotonin receptors (HTR) in modulating tardive dyskinesia by genotyping patients with schizophrenia.MethodsA set of 29 SNPs of genes of serotonin receptors HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B, and HTR6 was studied in a population of 449 Caucasians (226 females and 223 males) with verified clinical diagnosis of schizophrenia (according to ICD-10: F20). Five SNPs were excluded because of low minor allele frequency or for not passing the Hardy-Weinberg equilibrium test. Affinity of antipsychotics to 5-HT2 receptors was defined according to previous publications. Genotyping was carried out with SEQUENOM Mass Array Analyzer 4.ResultsStatistically significant associations of rs1928040 of HTR2A gene in groups of patients with orofacial type of TD and total diagnosis of TD was found for alleles, and a statistical trend for genotypes. Moreover, statistically significant associations were discovered in the female group for rs1801412 of HTR2C for alleles and genotypes. Excluding patients who used HTR2A, respectively, HTR2C antagonists changed little to the associations of HTR2A polymorphisms, but caused a major change of the magnitude of the association of HTR2C variants. Due to the low patient numbers, these sub-analyses did not have significant results.ConclusionWe found significant associations in rs1928040 of HTR2A and for rs1801412 of X-bound HTR2C in female patients. The associations were particularly related to the orofacial type of TD. Excluding patients using relevant antagonists particularly affected rs1801412, but not rs1928040-related associations. This suggest that rs1801412 is directly or indirectly linked to the functioning of HTR2C. Further study of variants of the HTR2C gene in a larger group of male patients who were not using HTR2C antagonists is necessary in order to verify a possible functional role of this receptor.
Project description:The 5-HT3B subunit was first cloned in 1999, and co-expression with the 5-HT3A subunit results in heteromeric 5-HT₃AB receptors that are functionally distinct from homomeric 5-HT₃A receptors. The affinities of competitive ligands at the two receptor subtypes are usually similar, but those of non-competitive antagonists that bind in the pore often differ. A competitive ligand and allosteric modulator that distinguishes 5-HT₃A from 5-HT₃AB receptors has recently been described, and the number of non-competitive antagonists identified with this ability has increased in recent years. In this review, we discuss the differences between 5-HT₃A and 5-HT₃AB receptors and describe the possible sites of action of compounds that can distinguish between them.