Project description:Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF.
Project description:This data series contains spotted oligo microarray data from 10 different experiments using Agilent Rat v2 microarrays. This data is being made public in support of Fillon S et al. Journal of Immunology, (2006). Proinflammatory bacterial components are at least partially responsible for causing the clinical features of sepsis, a syndrome that causes >100,000 deaths each year in the US (1). In the case of Gram positive infection, a key bacterial element recognized by the innate immune system is the cell wall, a complex network of peptidoglycan covalently linked to teichoic acids, proteins and lipoproteins. The current model of innate immune recognition of Gram positive bacteria suggests bacterial cell wall interacts with host recognition proteins, such as toll-like receptors (TLR) and Nod proteins. We describe an additional recognition system mediated by the platelet activating factor receptor (PAFr) and directed to the pathogen associated molecular pattern (PAMP) phosphorylcholine that results in uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild type, Tlr2-/- and Nod2-/- mice, but not in Pafr-/- mice. Cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons, but causing rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as cell wall into host cells from where the response ranges from quiescence to severe pathophysiology. Keywords: Competitive hybridizations The ten experiments in this series comprise of four distinct experiments, two of which were performed as biological triplicates and two as biological duplicates. The table below describes the overall design in detail: File Name Experiment 16011868017643v41_GEO_format.txt RBCEC Replicate 1 16011868017644v41_GEO_format.txt RBCEC Replicate 2 251186821865v41_GEO_format.txt Neuron Replicate 1 16011868021377v41_GEO_format.txt Neuron Replicate 2 251186821690v41_GEO_format.txt CW/Lyt44 Replicate 1 251186821691v41_GEO_format.txt CW/Lyt44 Replicate 2 251186821692v41_GEO_format.txt CW/Lyt44 Replicate 1 251186821693v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 1 251186821694v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 2 251186829677v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 3
Project description:Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens.
Project description:This data series contains spotted oligo microarray data from 10 different experiments using Agilent Rat v2 microarrays. This data is being made public in support of Fillon S et al. Journal of Immunology, (2006). Proinflammatory bacterial components are at least partially responsible for causing the clinical features of sepsis, a syndrome that causes >100,000 deaths each year in the US (1). In the case of Gram positive infection, a key bacterial element recognized by the innate immune system is the cell wall, a complex network of peptidoglycan covalently linked to teichoic acids, proteins and lipoproteins. The current model of innate immune recognition of Gram positive bacteria suggests bacterial cell wall interacts with host recognition proteins, such as toll-like receptors (TLR) and Nod proteins. We describe an additional recognition system mediated by the platelet activating factor receptor (PAFr) and directed to the pathogen associated molecular pattern (PAMP) phosphorylcholine that results in uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild type, Tlr2-/- and Nod2-/- mice, but not in Pafr-/- mice. Cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons, but causing rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as cell wall into host cells from where the response ranges from quiescence to severe pathophysiology. Keywords: Competitive hybridizations
Project description:total RNA from mouse (male c57BL/6) spleen labeled with Cy3 vs total RNA from mouse (male c57BL/6) B cells treated with Platelet activating factor labeled with Cy5- time course with repeats Keywords: ordered
Project description:A competitive PCR assay was developed to quantify platelet-activating factor (PAF) receptor (PAF-R) transcripts in rat tissues using a synthetic RNA as a competitor. We found PAF-R mRNA constitutively expressed in the eight organs tested, with the ileum containing the highest concentration [(3.49+/-0.15) x 10(7) molecules/microg of RNA]. Significant but lower levels were also detected in the jejunum, spleen, lungs, kidneys, heart, stomach and liver. Furthermore we defined the regulatory role of inflammatory mediators in ileal PAF-R gene expression using a rat model of intestinal injury induced by PAF or lipopolysaccharide (LPS). Injection of LPS or low-dose PAF resulted in a marked increase in ileal PAF-R mRNA within 30 min. The up-regulation on PAF-R elicited by PAF was biphasic, peaking first at 90 min, then again at 6 h. In contrast, LPS elicited a weak monophasic response. The second phase of PAF-R mRNA increase after PAF administration was completely abolished by WEB 2170, a PAF antagonist, and partially inhibited by antitumour necrosis factor (TNF) antibody. These observations indicate the involvement of endogenous PAF and TNF in this event. In conclusion, we found: (a) preferential PAF-R expression in the ileum, suggesting a role for PAF in intestinal inflammation; (b) induction of PAF-R expression in vivo by its own agonist; (c) a complex regulation of PAR-R gene expression in vivo involving a network of various pro-inflammatory mediators.
Project description:Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.
Project description:Lipid species are known to have various biological functions owing to their structural differences, and each of them possesses a specific role to play depending upon their location and distribution in the cell. Some of these lipids interact with proteins on the cell membrane and acts as second messengers. The level of lipid mediators is generally maintained in the cell by feedback mechanisms; however, their improper degradation or enhanced production leads to their accumulation in the tumor microenvironment and disturbs the homeostasis of the cell. Platelet activating factor (PAF) is a known phospholipid mediator secreted upon immunological challenges by platelets, neutrophils, basophils, and macrophages. PAF, as a potent inflammatory molecule, is well studied, and its role in various cancers and cardiovascular diseases has also been investigated. Interestingly, increased levels of PAF have been found in the blood plasma of smokers, and breast cancer cells have shown the accumulation of PAF in presence of cigarette smoke extract. This accumulation was found to increase tumor cell motility that in turn could promote metastasis. Beyond this, however, the effect of PAF on tumorigenesis has not yet been well explored. Here, we show that the continuous exposure of 3D breast acinar cultures to PAF resulted in the activation of various oncogenic signaling pathways leading to transformation. We also found that the presence of PAF in the micro-environment increased the expression of PAF receptor (PAF-R), which corroborated with the higher expression of PAF-R detected in some epithelial cancers, as per literature. Thus, this study impresses on the fact that the presence of PAF alters the cellular microenvironment and eventually triggers irreversible effects that can cumulatively lead to transformation.
Project description:UV radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes has a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by upregulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression; therefore, we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF, and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 upregulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.
Project description:Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive. Both in vivo and in vitro, newly recruited neutrophils into the tumor sites remained activated and highly motile for several days and developed immunosuppressive phenotypes, as indicated by increased arginase 1 (Arg1) and dcTrail-R1 expression and suppressed anticancer CD8 T cell cytotoxicity. The strong suppressive function was successfully recapitulated by incubating naive neutrophils with cancer cell culture supernatant in vitro. Cancer metabolite secretome analyses of the culture supernatant revealed that both murine and human cancers released lipid mediators to induce the differentiation of immunosuppressive neutrophils. Liquid chromatography-mass spectrometry (LC-MS) lipidomic analysis identified platelet-activation factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) as a common tumor-derived lipid mediator that induces neutrophil differentiation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2), the PAF biosynthetic enzyme, is up-regulated in human pancreatic ductal adenocarcinoma (PDAC) and shows an unfavorable correlation with patient survival across multiple cancer types. Our study identifies PAF as a lipid-driven mechanism of MDSC differentiation in the TME, providing a potential target for cancer immunotherapy.