Project description:Over the past decade, research on the genetic variants underlying susceptibility to autism and autism spectrum disorders (ASDs) has focused on linkage and candidate gene studies. This research has implicated various chromosomal loci and genes. Candidate gene studies have proven to be particularly intractable, with many studies failing to replicate previously reported associations. In this paper, we investigate previously implicated genomic regions for a role in ASD susceptibility, using four cohorts of European ancestry. Initially, a 384 SNP Illumina GoldenGate array was used to examine linkage at six previously implicated loci. We identify linkage approaching genome-wide suggestive levels on chromosome 2 (rs2885116, MLOD=1.89). Association analysis showed significant associations in MKL2 with ASD (rs756472, P=4.31 x 10(-5)) and between SND1 and strict autism (rs1881084, P=7.76 x 10(-5)) in the Finnish and Northern Dutch populations, respectively. Subsequently, we used a second 384 SNP Illumina GoldenGate array to examine the association in seven candidate genes, and evidence for association was found in RELN (rs362780, P=0.00165). Further increasing the sample size strengthened the association with RELN (rs362780, P=0.001) and produced a second significant result in GRIK2 (rs2518261, P=0.008). Our results strengthen the case for a more detailed study of the role of RELN and GRIK2 in autism susceptibility, as well as identifying two new potential candidate genes, MKL2 and SND1.
Project description:Autism is a genetically complex neurodevelopmental syndrome in which language deficits are a core feature. We describe results from two complimentary approaches used to identify risk variants on chromosome 7 that likely contribute to the etiology of autism. A two-stage association study tested 2758 SNPs across a 10 Mb 7q35 language-related autism QTL in AGRE (Autism Genetic Resource Exchange) trios and found significant association with Contactin Associated Protein-Like 2 (CNTNAP2), a strong a priori candidate. Male-only containing families were identified as primarily responsible for this association signal, consistent with the strong male affection bias in ASD and other language-based disorders. Gene-expression analyses in developing human brain further identified CNTNAP2 as enriched in circuits important for language development. Together, these results provide convergent evidence for involvement of CNTNAP2, a Neurexin family member, in autism, and demonstrate a connection between genetic risk for autism and specific brain structures.
Project description:BACKGROUND: HOXB1 plays a major role in brainstem morphogenesis and could partly determine the cranial circumference in conjunction with HOXA1. In our sample, HOXA1 alleles significantly influence head growth rates both in autistic patients and in population controls. An initial report, suggesting that HOXB1 could confer autism vulnerability in interaction with HOXA1, was not confirmed by five small association studies. METHODS: Our sample includes 269 autistic individuals, belonging to 219 simplex and 28 multiplex families. A mutational analysis of the two exons and flanking intronic sequences of the HOXB1 gene was carried out in 84 autistic patients by denaturing high performance liquid chromatography, followed by DNA sequencing. Identified rare variants were then searched by a restriction analysis in 236 autistic patients and 325-345 controls. Case-control and family-based association studies were performed on two common variants in 169 Italian patients versus 184 Italian controls and in 247 trios. RESULTS: We identified three common polymorphisms, rs72338773 [c.82insACAGCGCCC (INS/nINS)], rs12939811 [c.309A>T (Q103H)], and rs7207109 [c.450G>A (A150A)] and three rare variants, namely IVS1+63G>A, rs35115415 [c.702G>A (V234V)] and c.872_873delinsAA (S291N). SNPs rs72338773 and rs12939811 were not associated with autism, using either a case-control (alleles, exact P = 0.13) or a family-based design [transmission/disequilibrium test (TDT)chi2 = 1.774, P = 0.183]. The rare variants, all inherited from one of the parents, were present in two Italian and in two Caucasian-American families. Autistic probands in two families surprisingly inherited a distinct rare variant from each parent. The IVS1+63A allele was present in 3/690 control chromosomes, whereas rare alleles at rs35115415 and c.872_873delinsAA (S291N) were not found in 662 and 650 control chromosomes, respectively. The INS-T309 allele influenced head size, but its effect appears more modest and shows no interaction with HOXA1 alleles. The INS-T309 allele is also associated with more severe stereotypic behaviours, according to ADI-R scores (N = 60 patients, P < 0.01). CONCLUSIONS: HOXB1 mutations do not represent a common cause of autism, nor do HOXB1 common variants play important roles in autism vulnerability. HOXB1 provides minor, albeit detectable contributions to head circumference in autistic patients, with HOXA1 displaying more prominent effects. HOXB1 variants may modulate the clinical phenotype, especially in the area of stereotypic behaviours.
Project description:A genome scan was previously performed and pointed to chromosome 6q21 as a candidate region for autism. This region contains the glutamate receptor 6 (GluR6 or GRIK2) gene, a functional candidate for the syndrome. Glutamate is the principal excitatory neurotransmitter in the brain and is directly involved in cognitive functions such as memory and learning. We used two different approaches, the affected sib-pair (ASP) method and the transmission disequilibrium test (TDT), to investigate the linkage and association between GluR6 and autism. The ASP method, conducted with additional markers on the 51 original families and in eight new sibling pairs, showed a significant excess of allele sharing, generating an elevated multipoint maximum LOD score (ASPEX MLS = 3.28). TDT analysis, performed in the ASP families and in an independent data set of 107 parent-offspring trios, indicated a significant maternal transmission disequilibrium (TDTall P = 0.0004). Furthermore, TDT analysis (with only one affected proband per family) showed significant association between GluR6 and autism (TDT association P = 0.008). In contrast to maternal transmission, paternal transmission of GluR6 alleles was as expected in the absence of linkage, suggesting a maternal effect such as imprinting. Mutation screening was performed in 33 affected individuals, revealing several nucleotide polymorphisms (SNPs), including one amino acid change (M867I) in a highly conserved domain of the intracytoplasmic C-terminal region of the protein. This change is found in 8% of the autistic subjects and in 4% of the control population and seems to be more maternally transmitted than expected to autistic males (P = 0.007). Taken together, these data suggest that GluR6 is in linkage disequilibrium with autism.
Project description:Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.
Project description:Independent studies report association of autism spectrum disorder with air pollution exposure and a functional promoter variant (rs1858830) in the MET receptor tyrosine kinase (MET) gene. Toxicological data find altered brain Met expression in mice after prenatal exposure to a model air pollutant. Our objective was to investigate whether air pollution exposure and MET rs1858830 genotype interact to alter the risk of autism spectrum disorder.We studied 252 cases of autism spectrum disorder and 156 typically developing controls from the Childhood Autism Risk from Genetics and the Environment Study. Air pollution exposure was assigned for local traffic-related sources and regional sources (particulate matter, nitrogen dioxide, and ozone). MET genotype was determined by direct resequencing.Subjects with both MET rs1858830 CC genotype and high air pollutant exposures were at increased risk of autism spectrum disorder compared with subjects who had both the CG/GG genotypes and lower air pollutant exposures. There was evidence of multiplicative interaction between NO2 and MET CC genotype (P= 0.03).MET rs1858830 CC genotype and air pollutant exposure may interact to increase the risk of autism spectrum disorder.
Project description:During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.
Project description:MET receptor tyrosine kinase (MET) has been proposed as a candidate risk gene for autism spectrum disorder (ASD) based on associations between MET polymorphisms and ASD diagnosis, as well as evidence from animal studies that MET protein may regulate early development of cortical regions implicated in the neurobiology of ASD. The relevance of differences in MET signaling for human cortical development remains unexamined, however. We sought to address this issue by relating genotype at a functional single nucleotide polymorphism within the MET promoter (rs1858830, G→C) to in vivo measures of cortical thickness (CT) development derived from 222 healthy children and adolescents with 514 longitudinally acquired structural magnetic resonance imaging brain scans between ages 9 and 22 years. We identified a statistically significant, developmentally fixed, and stepwise CT reduction with increasing C allele dose in superior and middle temporal gyri, ventral precentral and postcentral gyri, and anterior cingulate bilaterally, and in the right frontopolar cortex. We were also able to demonstrate that mean CT within these cortical regions showed a statistically significant reduction with increasing scores on a continuous measure of autistic traits (the Social Responsiveness Scale). The cortical regions highlighted by our analyses are not only established areas of MET expression during prenatal life but are also key components of the "social brain" that have frequently shown structural and functional abnormalities in autism. Our results suggest that genetic differences in the MET gene may influence the development of cortical systems implicated in the neurobiology of ASD.
Project description:Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing.
Project description:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were used. Premature infants and mothers of premature infants were defined as affected cases in independent analyses.Analyses with the infant as the case identified two genes with evidence of linkage: CRHR1 (P = 0.0012) and CYP2E1 (P = 0.0011). Analyses with the mother as the case identified four genes with evidence of linkage: ENPP1 (P = 0.003), IGFBP3 (P = 0.006), DHCR7 (P = 0.009), and TRAF2 (P = 0.01). DNA sequence analysis of the coding exons and splice sites for CRHR1 and TRAF2 identified no new likely etiologic variants.These findings suggest the involvement of six genes acting through the infant and/or the mother in the etiology of PTB.