Unknown

Dataset Information

0

Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat.


ABSTRACT: BACKGROUND:Gene silencing vectors based on Barley stripe mosaic virus (BSMV) are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species) have created a need for tools to study gene function in these species. RESULTS:Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS) of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-?-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS) gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa) and diploid (A. strigosa) oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-? component. CONCLUSIONS:Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too weak to be of practical use. The new BSMV vectors modified for ligation-free cloning will allow rapid insertion of plant gene fragments for future experiments.

SUBMITTER: Pacak A 

PROVIDER: S-EPMC3006357 | biostudies-literature | 2010 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat.

Pacak Andrzej A   Geisler Katrin K   Jørgensen Bodil B   Barciszewska-Pacak Maria M   Nilsson Lena L   Nielsen Tom Hamborg TH   Johansen Elisabeth E   Grønlund Mette M   Jakobsen Iver I   Albrechtsen Merete M  

Plant methods 20101130


<h4>Background</h4>Gene silencing vectors based on Barley stripe mosaic virus (BSMV) are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium d  ...[more]

Similar Datasets

| S-EPMC3198768 | biostudies-literature
| S-EPMC4425524 | biostudies-literature
| S-EPMC3629216 | biostudies-literature
| S-EPMC3003816 | biostudies-other
2018-04-22 | GSE97940 | GEO