Unknown

Dataset Information

0

Circadian rhythms persist without transcription in a eukaryote.


ABSTRACT: Circadian rhythms are ubiquitous in eukaryotes, and coordinate numerous aspects of behaviour, physiology and metabolism, from sleep/wake cycles in mammals to growth and photosynthesis in plants. This daily timekeeping is thought to be driven by transcriptional-translational feedback loops, whereby rhythmic expression of 'clock' gene products regulates the expression of associated genes in approximately 24-hour cycles. The specific transcriptional components differ between phylogenetic kingdoms. The unicellular pico-eukaryotic alga Ostreococcus tauri possesses a naturally minimized clock, which includes many features that are shared with plants, such as a central negative feedback loop that involves the morning-expressed CCA1 and evening-expressed TOC1 genes. Given that recent observations in animals and plants have revealed prominent post-translational contributions to timekeeping, a reappraisal of the transcriptional contribution to oscillator function is overdue. Here we show that non-transcriptional mechanisms are sufficient to sustain circadian timekeeping in the eukaryotic lineage, although they normally function in conjunction with transcriptional components. We identify oxidation of peroxiredoxin proteins as a transcription-independent rhythmic biomarker, which is also rhythmic in mammals. Moreover we show that pharmacological modulators of the mammalian clock mechanism have the same effects on rhythms in Ostreococcus. Post-translational mechanisms, and at least one rhythmic marker, seem to be better conserved than transcriptional clock regulators. It is plausible that the oldest oscillator components are non-transcriptional in nature, as in cyanobacteria, and are conserved across kingdoms.

SUBMITTER: O'Neill JS 

PROVIDER: S-EPMC3040569 | biostudies-literature | 2011 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


Circadian rhythms are ubiquitous in eukaryotes, and coordinate numerous aspects of behaviour, physiology and metabolism, from sleep/wake cycles in mammals to growth and photosynthesis in plants. This daily timekeeping is thought to be driven by transcriptional-translational feedback loops, whereby rhythmic expression of 'clock' gene products regulates the expression of associated genes in approximately 24-hour cycles. The specific transcriptional components differ between phylogenetic kingdoms.  ...[more]

Similar Datasets

| S-EPMC3285613 | biostudies-literature
| S-EPMC4372156 | biostudies-literature
| S-EPMC3031267 | biostudies-literature
| 2132582 | ecrin-mdr-crc
| S-EPMC7492989 | biostudies-literature
| S-EPMC4090172 | biostudies-literature
| S-EPMC5005998 | biostudies-literature
| S-EPMC3650122 | biostudies-literature
| S-EPMC3215069 | biostudies-literature
| S-EPMC3735537 | biostudies-literature