Unknown

Dataset Information

0

Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response.


ABSTRACT: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 ?M) inorganic arsenite (iAs³(+)) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs³(+) exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs³(+) exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in adipocytes. Taken together our studies suggest that prolonged low-level iAs³(+) exposure activates the cellular adaptive oxidative stress response, which impairs insulin-stimulated ROS signaling that is involved in ISGU, and thus causes insulin resistance in adipocytes.

SUBMITTER: Xue P 

PROVIDER: S-EPMC3086019 | biostudies-literature | 2011 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response.

Xue Peng P   Hou Yongyong Y   Zhang Qiang Q   Woods Courtney G CG   Yarborough Kathy K   Liu Huiyu H   Sun Guifan G   Andersen Melvin E ME   Pi Jingbo J  

Biochemical and biophysical research communications 20110317 2


There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellu  ...[more]

Similar Datasets

| S-EPMC6337507 | biostudies-literature
| S-EPMC1131627 | biostudies-other
2022-05-27 | GSE203489 | GEO
| S-EPMC6169790 | biostudies-literature
| S-EPMC3979956 | biostudies-literature
| S-EPMC4975473 | biostudies-literature
| S-EPMC3416860 | biostudies-literature
| S-EPMC6657571 | biostudies-literature
| S-EPMC4541715 | biostudies-literature