Project description:Neutrophil elastase is a serine protease stored in the azurophilic granules of leukocytes. It has been implicated in the pathology of several lung diseases and is generally presumed to contribute to the tissue destruction and extracellular matrix damage associated with these conditions. To delineate the role of neutrophil elastase in pulmonary inflammation and fibrosis, neutrophil elastase-null mice were intratracheally instilled with bleomycin. In neutrophil elastase-null mice, biochemical and morphological characteristics of pulmonary fibrosis were attenuated for at least 60 days after bleomycin administration despite a typical response to bleomycin as evidenced by assessment of indices of DNA and cell damage. Neutrophil burden of bleomycin-treated wild-type and neutrophil elastase-null mice was comparable, and marked neutrophilic alveolitis was manifest in bleomycin-treated neutrophil elastase-null mice. An absence of immunostaining for active transforming growth factor (TGF)-beta in lung tissue from bleomycin-treated neutrophil elastase-null mice suggested a defect in TGF-beta activation, which was confirmed by biochemical assessment of TGF-beta levels in bronchoalveolar lavage fluid and lung tissue. These data point to novel and unexpected fibrogenic consequences of neutrophil elastase activity in the inflamed lung.
Project description:Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.
Project description:We report our discovery of an important player in the development of skin fibrosis, a hallmark of scleroderma. Scleroderma is a fibrotic disease, affecting 70,000 to 150,000 Americans. Fibrosis is a pathological wound healing process that produces an excessive extracellular matrix to interfere with normal organ function. Fibrosis contributes to nearly half of human mortality. Scleroderma has heterogeneous phenotypes, unpredictable outcomes, no validated biomarkers, and no effective treatment. Thus, strategies to slow down scleroderma progression represent an urgent medical need. While a pathological wound healing process like fibrosis leaves scars and weakens organ function, oral mucosa wound healing is a scarless process. After re-analyses of gene expression datasets from oral mucosa wound healing and skin fibrosis, we discovered that several pathways constitutively activated in skin fibrosis are transiently induced during oral mucosa wound healing process, particularly the amphiregulin (Areg) gene. Areg expression is upregulated ~ 10 folds 24hrs after oral mucosa wound but reduced to the basal level 3 days later. During bleomycin-induced skin fibrosis, a commonly used mouse model for skin fibrosis, Areg is up-regulated throughout the fibrogenesis and is associated with elevated cell proliferation in the dermis. To demonstrate the role of Areg for skin fibrosis, we used mice with Areg knockout, and found that Areg deficiency essentially prevents bleomycin-induced skin fibrosis. We further determined that bleomycin-induced cell proliferation in the dermis was not observed in the Areg null mice. Furthermore, we found that inhibiting MEK, a downstream signaling effector of Areg, by selumetinib also effectively blocked bleomycin-based skin fibrosis model. Based on these results, we concluded that the Areg-EGFR-MEK signaling axis is critical for skin fibrosis development. Blocking this signaling axis may be effective in treating scleroderma.
Project description:Idiopathic pulmonary fibrosis (IPF) is an incurable chronic progressive disease with a low survival rate and ineffective therapeutic options. We examined the effects of imrecoxib, a nonsteroidal anti-inflammatory drug, on experimental pulmonary fibrosis. The mouse IPF model was established by intratracheal instillation of bleomycin. From Day 0 to Day 13, the mice were orally administered imrecoxib (100 mg/kg) and pirfenidone (200 mg/kg) daily, and from Day 7 to Day 13, the mice were orally administered pirfenidone and imrecoxib daily. The tissues were dissected on the 14th day. Mouse body weight was measured, and histopathological examination and hydroxyproline content analysis confirmed that the administration of imrecoxib exerted a similar effect to pirfenidone. Compared with bleomycin-induced mice, imrecoxib-treated mice showed significantly reduced inflammatory factor expression (IL-1 and TNF-α) and inflammatory cell numbers (macrophages, lymphocytes, and neutrophils) in BALF (bronchoalveolar lavage fluid). Our experiment tested the ability of imrecoxib to inhibit the signal pathway involved in gene expression induced by TGF-β1 in the NIH-3T3 cell line in vitro. Western blotting showed that imrecoxib (20 μM and 40 μM) inhibited the expression of fibronectin, type I collagen and CTGF. In addition, imrecoxib reduced the levels of p-ERK1/2. The changes in the expression of related proteins in mouse lung tissue were similar to those in cells. In summary, our findings suggested that the administration of imrecoxib prevented and treated murine IPF by inhibiting inflammation and the TGF-β1-ERK1/2 signaling pathway.
Project description:The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells.
Project description:The microenvironment contributes to the excessive connective tissue deposition that characterizes fibrosis. Members of the CCN family of matricellular proteins are secreted by fibroblasts into the fibrotic microenvironment; however, the role of endogenous CCN1 in skin fibrosis is unknown. Mice harboring a fibroblast-specific deletion for CCN1 were used to assess if CCN1 contributes to dermal homeostasis, wound healing, and skin fibrosis. Mice with a fibroblast-specific CCN1 deletion showed progressive skin thinning and reduced accumulation of type I collagen; however, the overall mechanical property of skin (Young's modulus) was not significantly reduced. Real time-polymerase chain reaction analysis revealed that CCN1-deficient skin displayed reduced expression of mRNAs encoding enzymes that promote collagen stability (including prolyl-4-hydroxylase and PLOD2), although expression of COL1A1 mRNA was unaltered. CCN1-deficent skin showed reduced hydroxyproline levels. Electron microscopy revealed that collagen fibers were disorganized in CCN1-deficient skin. CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis, as visualized by reduced collagen accumulation and skin thickness suggesting that deposition/accumulation of collagen is impaired in the absence of CCN1. Conversely, CCN1-deficient mice showed unaltered wound closure kinetics, suggesting de novo collagen production in response to injury did not require CCN1. In response to either wounding or bleomycin, induction of α-smooth muscle actin-positive myofibroblasts was unaffected by loss of CCN1. CCN1 protein was overexpressed by dermal fibroblasts isolated from lesional (i.e., fibrotic) areas of patients with early onset diffuse scleroderma. Thus, CCN1 expression by fibroblasts, being essential for skin fibrosis, is a viable anti-fibrotic target.
Project description:Fibrosis can develop in nearly any tissue leading to a wide range of chronic fibrotic diseases. However, current treatment options are limited. In this study, we utilized an established aged mouse model of bleomycin-induced lung fibrosis (BLM) to test our hypothesis that fibrosis may develop simultaneously in multiple organs by evaluating skin fibrosis and wound healing. Fibrosis was induced in lung in aged (18-22-month-old) C57BL/6 male mice by intratracheal BLM administration. Allogeneic adipose-derived mesenchymal stromal cells (ASCs) or saline were injected intravenously 24 hr after BLM administration. Full thickness 8-mm punch wounds were performed 7 days later to study potential systemic anti-fibrotic and wound healing effects of intravenously delivered ASCs. Mice developed lung and skin fibrosis as well as delayed wound closure. Moreover, we observed similar changes in the expression of known pro-fibrotic factors in both lung and skin wound tissue, including miR-199 and protein expression of its corresponding target, caveolin-1, as well as phosphorylation of protein kinase B. Importantly, ASC-treated mice exhibited attenuation of BLM-induced lung and skin fibrosis and accelerated wound healing, suggesting that ASCs may prime injured tissues and prevent end-organ fibrosis.
Project description:The prevalence of pulmonary fibrosis is increasing with an aging population and its burden is likely to increase following COVID-19, with large financial and medical implications. As approved therapies in pulmonary fibrosis only slow disease progression, there is a significant unmet medical need. Hyperbaric oxygen (HBO) is the inhaling of pure oxygen, under the pressure of greater than one atmosphere absolute, and it has been reported to improve pulmonary function in patients with pulmonary fibrosis. Our recent study suggested that repetitive HBO exposure may affect biological processes in mice lungs such as response to wounding and extracellular matrix. To extend these findings, a bleomycin-induced pulmonary fibrosis mouse model was used to evaluate the effect of repetitive HBO exposure on pulmonary fibrosis. Building on our previous findings, we provide evidence that HBO exposure attenuates bleomycin-induced pulmonary fibrosis in mice. In vitro, HBO exposure could reverse, at least partially, transforming growth factor (TGF)-β-induced fibroblast activation, and this effect may be mediated by downregulating TGF-β-induced expression of hypoxia inducible factor (HIF)-1α. These findings support HBO as a potentially life-changing therapy for patients with pulmonary fibrosis, although further research is needed to fully evaluate this.
Project description:PurposeHigh levels of NaCl in the diet are associated with both cardiac and renal fibrosis, but whether salt intake affects pulmonary fibrosis has not been examined.Aim of the studyTo test the hypothesis that salt intake might affect pulmonary fibrosis.Materials and methodsMice were fed low, normal, or high salt diets for 2 weeks, and then treated with oropharyngeal bleomycin to induce pulmonary fibrosis, or oropharyngeal saline as a control.ResultsAs determined by collagen staining of lung sections, and protein levels and cell numbers in the bronchoalveolar lavage (BAL) fluid at 21 days after bleomycin, the high salt diet did not exacerbate bleomycin-induced fibrosis, while the low salt diet attenuated fibrosis. For the bleomycin-treated mice, staining of the post-BAL lung sections indicated that compared to the regular salt diet, high salt increased the number of Ly6c-positive macrophages and decreased the number of CD11c and CD206-positive macrophages and dendritic cells. The low salt diet caused bleomycin-induced leukocyte numbers to be similar to control saline-treated mice, but reduced numbers of CD45/collagen-VI positive fibrocytes. In the saline controls, low dietary salt decreased CD11b and CD11c positive cells in lung sections, and high dietary salt increased fibrocytes.ConclusionsTogether, these data suggest the possibility that a low salt diet might attenuate pulmonary fibrosis.
Project description:BACKGROUND: Antiflammin-1 (AF-1), a derivative of uteroglobin (UG), is a synthetic nonapeptide with diverse biological functions. In the present study, we investigated whether AF-1 has a protective effect against bleomycin-induced pulmonary fibrosis. METHODS: C57BL/6 mice were injected with bleomycin intratracheally to create an animal model of bleomycin-induced pulmonary fibrosis. On Day 7 and Day 28, we examined the anti-inflammatory effect and antifibrotic effect, respectively, of AF-1 on the bleomycin-treated mice. The effects of AF-1 on the transforming growth factor-beta 1 (TGF-?1)-induced proliferation of murine lung fibroblasts (NIH3T3) were examined by a bromodeoxycytidine (BrdU) incorporation assay and cell cycle analysis. RESULTS: Severe lung inflammation and fibrosis were observed in the bleomycin-treated mice on Day 7 and Day 28, respectively. Administration of AF-1 significantly reduced the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and the levels of tumor necrosis factor-alpha (TNF-?) and interleukin-1 beta (IL-1?) in the lung homogenates on Day 7. Histological examination revealed that AF-1 markedly reduced the number of infiltrating cells on Day 7 and attenuated the collagen deposition and destruction of lung architecture on Day 28. The hydroxyproline (HYP) content was significantly decreased in the AF-1-treated mice. In vitro, AF-1 inhibited the TGF-?1-induced proliferation of NIH3T3 cells, which was mediated by the UG receptor. CONCLUSIONS: AF-1 has anti-inflammatory and antifibrotic actions in bleomycin-induced lung injury. We propose that the antifibrotic effect of AF-1 might be related to its suppression of fibroblast growth in bleomycin-treated lungs and that AF-1 has potential as a new therapeutic tool for pulmonary fibrosis.