Unknown

Dataset Information

0

The Samd9L gene: transcriptional regulation and tissue-specific expression in mouse development.


ABSTRACT: Normophosphatemic familial tumoral calcinosis (NFTC) is caused by mutations in the SAMD9 gene. This gene is absent in mouse, while there is a murine paralog, Samd9-like (Samd9L). To clarify the relationships between SAMD9 and SAMD9L, we investigated the transcriptional regulation and expression pattern of mouse Samd9L. An ?1.5-kb mouse Samd9L promoter fragment was cloned, and a series of 5' deletion constructs were linked to a luciferase reporter gene. All constructs showed significant activity in transfected epithelial cells and mouse fibroblasts, and the presence of regulatory cis-elements as close as 87?bp upstream of the transcription start site was identified. Ras-responsive element binding protein 1 (Rreb-1) was identified in this region by protein-DNA binding array. The expression of Samd9L was upregulated by calcitonin, and this was preceded by a significant increase in the expression of Rreb-1 mRNA. Quantitative real-time PCR analysis of Samd9L revealed near-ubiquitous expression, with the highest level in the kidney. Tissue-specific expression was also confirmed both by in situ ?-gal staining and quantitative enzymatic activity assay in a transgenic Samd9L(+/-) mouse in which the LacZ gene replaced exon 2 in the Samd9L gene. These findings assist in understanding the regulation of Samd9L in the context of its paralogous gene, SAMD9, which harbors mutations in NFTC.

SUBMITTER: Jiang Q 

PROVIDER: S-EPMC3173943 | biostudies-literature | 2011 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Samd9L gene: transcriptional regulation and tissue-specific expression in mouse development.

Jiang Qiujie Q   Quaynor Benjamin B   Sun Alex A   Li Qiaoli Q   Matsui Hirotaka H   Honda Hiroaki H   Inaba Toshiya T   Sprecher Eli E   Uitto Jouni J  

The Journal of investigative dermatology 20110317 7


Normophosphatemic familial tumoral calcinosis (NFTC) is caused by mutations in the SAMD9 gene. This gene is absent in mouse, while there is a murine paralog, Samd9-like (Samd9L). To clarify the relationships between SAMD9 and SAMD9L, we investigated the transcriptional regulation and expression pattern of mouse Samd9L. An ∼1.5-kb mouse Samd9L promoter fragment was cloned, and a series of 5' deletion constructs were linked to a luciferase reporter gene. All constructs showed significant activity  ...[more]

Similar Datasets

| S-EPMC3797512 | biostudies-literature
| S-EPMC4121570 | biostudies-literature
| S-EPMC6040155 | biostudies-literature
| S-EPMC5555720 | biostudies-literature
| S-EPMC1151237 | biostudies-other
| S-EPMC2438328 | biostudies-literature
| S-EPMC3855576 | biostudies-literature
| S-EPMC3658269 | biostudies-other