Project description:Aromatic rings are common elements in pharmaceutically active compounds; however, their ready oxidation can present a liability with respect to a drug's metabolic stability. Replacing these aromatic rings in pharmaceutical compounds with non-aromatic isosteric motifs can enhance properties such as potency, metabolic stability, solubility, and lipophilicity. Since the binding pockets of most pharmaceutical targets are chiral, the stereochemical configuration of the isosteric replacements are expected to have an impact on the affinity of derived ligands for target receptors. A significant impediment to this approach is the lack of simple, and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. In this work, we present a heretofore unknown palladium-catalyzed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that that shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalyzed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold will render this platform a useful foundation for assembly of new biologically active agents.
Project description:The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C-C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C-H insertion and the subsequent reduction from the convex face.
Project description:Stereogenic acetals, spiroacetals and ketals are well-studied stereochemical features that bear two heteroatoms at a common carbon atom. These stereocenters are normally found in cyclic structures while linear (or acyclic) analogues bearing two heteroatoms are rare. Chiral geminal-dicarboxylates are illustrative, there is no current way to access this class of compounds while controlling the stereochemistry at the carbon center bound to two oxygen atoms. Here we report a rhodium-catalysed asymmetric carboxylation of ester-containing allylic bromides to form stereogenic carbon centers bearing two different carboxylates with high yields and enantioselectivities. The products, which are surprisingly stable to a variety of acidic and basic conditions, can be manipulated with no loss of enantiomeric purity as demonstrated by ring closing metathesis reactions to form chiral lactones, which have been extensively used as building blocks in asymmetric synthesis.
Project description:We report the catalytic stereocontrolled synthesis of dinucleotides. We have demonstrated, for the first time to our knowledge, that chiral phosphoric acid (CPA) catalysts control the formation of stereogenic phosphorous centers during phosphoramidite transfer. Unprecedented levels of diastereodivergence have also been demonstrated, enabling access to either phosphite diastereomer. Two different CPA scaffolds have proven to be essential for achieving stereodivergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-symmetric BINOL-derived CPAs, which completely overturn this stereochemical preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asymmetric catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides, which are of broad interest in immuno-oncology as agonists of the stimulator of interferon genes (STING) pathway.
Project description:Functionalized chiral diazaphospholanes ligate to a variety of transition metals, yielding chiral, catalytically active, metal complexes. Previous work has established that amino acid derivatization of the carboxyl groups of (R,R)-N,N'-phthaloyl-2,3-(2-carboxyphenyl)-phenyl-3,4-diazaphospholane (1) yields phosphines that are excellent ligands for palladium-catalyzed asymmetric allylic alkylation reactions. Alanine functionalization is particularly effective for allylic alkylation of 1,3-dimethylallyl acetate. Standard Merrifield resins and amino acid coupling methods are used to synthesize the bead-attached phosphine having the topology bead-linker-LAla-(R,R)-1-LAla-OMe, as a 1:1 mixture of linkage isomers. Use of this supported phosphine in Pd-catalyzed asymmetric allylic alkylation yields 92% enantiomeric excess, matching prior solution-phase results. A 20-member collection of amino acid-functionalized phosphines on beads with the topology bead-linker-AA(2)-AA(1)-1-AA(1)-AA(2) was synthesized by using parallel solid-state methods and screened for efficacy in allylic alkylation. Resulting enantioselectivities indicate that the AA(1) position has the strongest effect on the reaction. Catalyst activities can vary widely with the nature of the phosphine ligand and the reaction conditions. Meaningful analysis of intrinsic catalytic activities awaits identification of the structure and abundance of the active catalyst.
Project description:An asymmetric synthesis of d-ribo-phytosphingosine (1) was achieved by utilizing the ProPhenol (12)-catalyzed alkynylation of unsaturated aldehyde 8 to afford allylic propargylic alcohol (S)-6 followed by asymmetric epoxidation and opening of propargylic epoxy alcohol anti-5 with NaN(3)/NH(4)Cl. Deprotection and reduction of the resulting acyclic azide 3 then gave 1. Alkyne-azide 3 was subjected to an intramolecular click reaction, generating a bicyclic triazole, which was found to have unexpected vicinal coupling constants. Application of the advanced Mosher method verified the configurations of the three contiguous stereogenic centers of 1. An alkynyl azide analogue of 1, which may be useful as a glycosyl acceptor in the synthesis of alpha-galactosylceramide derivatives, was also readily prepared by this route.
Project description:Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.
Project description:The palladium(II) complex [(Rp,S)-COP-Cl]2 and its enantiomer catalyze the rearrangement of linear prochiral O-allyl carbamothioates under mild conditions to provide branched S-allyl carbamothioates in high yield and high enantiomeric purity.
Project description:A one-pot asymmetric synthesis of 1,2,3,4-tetrahydrocarbazoles has been developed via an enantioselective [3 + 3] annulation of 2-alkynylindoles and donor-acceptor cyclopropanes. In the presence of chiral Lewis acids as catalysts, a series of optically active tetrahydrocarbazoles were furnished in high yields (63-87%) with good to excellent levels of enantioselectivity (up to 94% ee).