Project description:A sulfenium-ion-initiated, catalytic, enantioselective polyene cyclization is described. Homogeranylarenes and ortho-geranylphenols undergo polycyclization in good yield, diastereoselectivity, and enantioselectivity. The stereodetermining step is the generation of an enantiomerically enriched thiiranium ion from a terminal alkene and a sulfenylating agent in the presence of a chiral Lewis basic catalyst. The use of hexafluoroisopropyl alcohol as the solvent is crucial to obtain good yields. The thioether moiety resulting from the reaction can be subsequently transformed into diverse oxygen and carbon functionality postcyclization. The utility of this method is demonstrated by the enantioselective syntheses of (+)-ferruginol and (+)-hinokiol.
Project description:A method for the enantioselective, intramolecular sulfenoamination of various olefins has been developed using a chiral BINAM-based selenophosphoramide, Lewis base catalyst. Terminal and trans disubstituted alkenes afforded pyrrolidines, piperidines, and azepanes in high yields and high enantiomeric ratios via enantioselective formation and subsequent stereospecific capture of the thiiranium intermediate with the pendant tosyl-protected amine.
Project description:A Lewis base catalyzed, enantioselective sulfenocyclization of alkenes to afford [6,6]spiroketals has been developed. The method uses a chiral Lewis base catalyst with an electrophilic sulfur source to generate enantioenriched thiiranium ion with alkenes. Upon formation, the thiiranium ion is subsequently captured in a cascade-type reaction, wherein a ketone oxygen serves as the nucleophile to open the thiiranium ion and an alcohol provides the secondary cyclization to form biorelevant spiroketals. A variety of electron-rich and electron-neutral E-substituted styrenes form the desired spiroketals in good yields with excellent enantio- and diastereoselectivities. Alkyl-substituted and terminal alkenes participate in the cascade reaction, but with a limited scope compared to the styrenyl substrates. This method allows for rapid formation of highly substituted spiroketals in good yield and excellent enantioselectivity.
Project description:A catalytic, enantioselective method for the preparation of chiral, non-racemic, alkylboronic esters bearing two vicinal stereogenic centers is described. The reaction proceeds via a 1,2-migration of a zwitterionic thiiranium-boronate complex to give exclusively anti carbosulfenylation products. A broad scope of aryl groups migrate with good yield and excellent enantioselectivity (up to 99:1 e.r.). Similarly, a range of di- and trisubstituted alkenylboronic esters are competent reaction partners. This method provides access to both secondary and tertiary chiral alkylboronic esters.
Project description:A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.
Project description:A method for the catalytic, enantioselective, intramolecular 1,2-sulfenoamidation of alkenes is described. Lewis base activation of a suitable sulfur electrophile generates an enantioenriched, thiiranium ion intermediate from a β,γ-unsaturated sulfonyl carboxamide. This intermediate is subsequently intercepted by the sulfonamide nitrogen resulting in cyclization to form γ-lactams. Electron-poor alkenes required the use of a new selenophosphoramidate Lewis base catalyst. Subsequent manipulations of the products harness the latent reactivity of both the amide and thioether functionality.
Project description:An efficient Cu-catalyzed protocol for enantioselective addition of a dimethylphenylsilanyl group to a wide range of cyclic and acyclic unsaturated ketones, esters, acrylonitriles, and alpha,beta,gamma,delta-dienones is disclosed. Reactions are performed in the presence of 1-2 mol % of commercially available and inexpensive CuCl, a readily accessible monodentate imidazolinium salt, and commercially available (dimethylphenylsilyl)pinacolatoboron. Cu-catalyzed enantioselective conjugate additions proceed to completion within only 2 h to afford the desired silanes in 87-97% yield and 90:10-99:1 enantiomeric ratio (er). Use of a proton source (e.g., MeOH) is not required; accordingly, synthetically versatile alpha-silyl boron enolates can be obtained. The special utility of the present protocol, in comparison with the related catalytic enantioselective aldol and boronate conjugate additions, is discussed and illustrated through various functionalizations of the enantiomerically enriched beta-silylcarbonyls.
Project description:Asymmetric, catalytic reactions of oxocarbenium ions are reported. Simple, chiral urea and thiourea derivatives are shown to catalyze the enantioselective substitution of silyl ketene acetals onto 1-chloroisochromans. A mechanism involving anion binding by the chiral catalyst to generate a reactive oxocarbenium ion is invoked. Catalysts bearing tertiary benzylic amide groups afforded highest enantioselectivities, with the optimal structure being derived from enantioenriched 2-arylpyrrolidine derivatives.
Project description:The full details of mechanistic investigation on enantioselective sulfenofunctionalization of alkenes under Lewis base catalysis are described. Solution spectroscopic identification of the catalytically active sulfenylating agent has been accomplished along with the spectroscopic identification of putative thiiranium ion intermediates generated in the enantiodetermining step. The structural insights gleaned from these studies informed the design of new catalyst architectures to improve enantioselectivity. In addition, structural modification of the sulfenylating agents had a significant and salutary effect on the enantioselectivity of sulfenofunctionalization which was demonstrated to be general for trans disubstituted alkenes. Whereas electronic modulation had little effect on the rate and selectivity, steric bulk on arylsulfenylphthalimides was very beneficial.
Project description:Catalytic allylboron additions to aldimines are presented for which small amounts of Zn(OMe)2 serve as the co-catalyst to accelerate allyl exchange and 1,3-borotropic shift processes. Low-yielding and moderately α- and diastereoselective reactions are thus turned into highly efficient γ-, diastereo-, and enantioselective transformations that exhibit considerable scope.