Palladium-catalyzed asymmetric construction of vicinal all-carbon quaternary stereocenters and its application to the synthesis of cyclotryptamine alkaloids.
Palladium-catalyzed asymmetric construction of vicinal all-carbon quaternary stereocenters and its application to the synthesis of cyclotryptamine alkaloids.
Project description:The construction of vicinal, congested stereocenters with high selectivities is of general utility in chemistry. To build two such stereocenters in one step from readily available starting materials is very desirable, but remains challenging. We report here a doubly stereoconvergent, Cu/Mg-catalyzed asymmetric propargylic substitution reaction to convert simple starting materials to products with vicinal tertiary and all-carbon quaternary stereocenters in high yields and excellent diastereo- and enantioselectivities. Both the nucleophiles and the electrophiles employed in this transformation are racemic. This reaction uses earth abundant metal catalysts, operates under ambient conditions, and demonstrates broad substrate scope. The products of this reaction are functional group rich and synthetically versatile. Key to the success of this development is the devise of a Cu/Mg dual catalytic system and the identification of a bulky tridentate pyridinebisimidazoline (PyBim) ligand.
Project description:Organoaluminum species promote a smooth nucleophilic substitution at the quaternary carbon stereocenter of stereodefined polysubstituted cyclopropyl methyl phosphate with a complete inversion of configuration, even when more reactive functional groups are present. The regio- and diastereoselectivity of the substitution is attributed to the existence of a bicyclobutonium intermediate.
Project description:We report a divergent and modular protocol for the preparation of acyclic molecular frameworks containing newly created quaternary carbon stereocenters. Central to this approach is a sequence composed of a (1) regioselective and -retentive preparation of allyloxycarbonyl-trapped fully substituted stereodefined amide enolates and of a (2) enantioselective palladium-catalyzed decarboxylative allylic alkylation reaction using a novel bisphosphine ligand.
Project description:General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.
Project description:Herein, we report a Zn-ProPhenol catalyzed Mannich reaction using α-branched ketones as nucleophilic partners for the direct enantio- and diastereoselective construction of quaternary carbon stereocenters. The reaction can be run on a gram-scale with a low catalyst loading without impacting its efficiency. Moreover, the Mannich adducts can be further elaborated with complete diastereocontrol to access molecules possessing complex stereotriads.
Project description:The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a catalyst prepared from Pd(OCOCF(3))(2) and a chiral pyridinooxazoline ligand yields enantioenriched products bearing benzylic stereocenters. Notably, this transformation is tolerant to air and moisture, providing a practical and operationally simple method of synthesizing enantioenriched all-carbon quaternary stereocenters.
Project description:Stereogenic nitrogen-containing heterocycles are ubiquitous in natural products and pharmaceutical compounds, but methods for their enantioselective construction have remained elusive. We report a general method for the asymmetric conjugate addition of arylboronic acids to β-alkyl/aryl α,β-unsaturated lactams that affords chiral β,β-disubstituted lactams. The transformation is operationally simple and air- and moisture-tolerant and uses a commercially available (S)-t-Bu-PyOx ligand. The method is high-yielding (up to 95% yield) and enantioselective (up to 97% ee) for a wide range of arylboronic acids and α,β-unsaturated lactams, including those with different ring sizes.
Project description:The development of a general catalytic method for the direct and stereoselective construction of cyclopropanes bearing highly congested vicinal all-carbon quaternary stereocenters remains a formidable challenge in chemical synthesis. Here, we report an intramolecular radical cyclopropanation of unactivated alkenes with simple α-methylene group of aldehydes as C1 source via a Cu(I)/secondary amine cooperative catalyst, which enables the single-step construction of bicyclo[3.1.0]hexane skeletons with excellent efficiency, broad substrate scope covering various terminal, internal alkenes as well as diverse (hetero)aromatic, alkenyl, alkyl-substituted geminal alkenes. Moreover, this reaction has been successfully realized to an asymmetric transformation, providing an attractive approach for the construction of enantioenriched bicyclo[3.1.0]hexanes bearing two crucial vicinal all-carbon quaternary stereocenters with good to excellent enantioselectivity. The utility of this method is illustrated by facile transformations of the products into various useful chiral synthetic intermediates. Preliminary mechanistic studies support a stepwise radical process for this formal [2 + 1] cycloaddition.
Project description:Highly congested vicinal stereocenters comprised of tertiary and all-carbon quaternary centers were generated via Ir-catalyzed asymmetric allylic alkylation of β-ketoesters. These catalytic reactions proceed in excellent yields with a broad scope on either reaction partner and with outstanding regio-, diastereo-, and enantiocontrol. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers.
Project description:The concurrent construction of 1,3-stereocenters remains a challenge. Herein, we report the development of stereoselective union of a point chiral center with allenyl axial chirality in 1,3-position by Pd-catalyzed asymmetric allenylic alkylation between racemic allenyl carbonates and indanone-derived β-ketoesters. Various target products bearing a broad range of functional groups were afforded in high yield (up to 99%) with excellent enantioselectivities (up to 98% ee) and good diastereoselectivities (up to 13:1 dr).