Project description:Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease of childhood, with JIA-associated uveitis its most common extra-articular manifestation. JIA-associated uveitis is a potentially sight-threatening condition and thus carries a considerable risk of morbidity. The aetiology of the condition is autoimmune in nature with the predominant involvement of CD4(+) T cells. However, the underlying pathogenic mechanisms remain unclear, particularly regarding interplay between genetic and environmental factors. JIA-associated uveitis comes in several forms, but the most common presentation is of the chronic anterior uveitis type. This condition is usually asymptomatic and thus screening for JIA-associated uveitis in at-risk patients is paramount. Early detection and treatment aims to stop inflammation and prevent the development of complications leading to visual loss, which can occur due to both active disease and burden of disease treatment. Visually disabling complications of JIA-associated uveitis include cataracts, glaucoma, band keratopathy and macular oedema. There is a growing body of evidence for the early introduction of systemic immunosuppressive therapies in order to reduce topical and systemic glucocorticoid use. This includes more traditional treatments, such as methotrexate, as well as newer biological therapies. This review highlights the epidemiology of JIA-associated uveitis, the underlying pathogenesis and how affected patients may present. The current guidelines and criteria for screening, diagnosis and monitoring are discussed along with approaches to management.
Project description:To describe recent evidence from the literature pertaining to juvenile idiopathic arthritis (JIA)-associated uveitis.Uveitis is most common in extended oligoarticular JIA. A significant number of patients already have ocular complications at time of diagnosis of uveitis. Risk factors for complications include either abnormally high or low intraocular pressure, posterior synechiae, male sex, temporal proximity to diagnosis of arthritis and topical corticosteroid use. Use of immunosuppressive agents significantly reduces ocular complications. Aggressive perioperative control of intraocular inflammation is necessary for successful cataract surgery with lens implantation. Controlled clinical trials are under way to assess the efficacy of biologic agents in JIA-associated uveitis. Long-term safety, however, is still unknown.JIA-associated uveitis carries significant ocular morbidity that lasts well into adulthood. Treatment with immunosuppressive agents can reduce the risk of ocular complications. Biologic agents hold promise in the treatment of JIA-associated uveitis, but require long-term data to assess their safety.
Project description:BackgroundHaptoglobin (Hp), a liver derived acute phase inflammatory protein (APP), has scarcely been studied in juvenile idiopathic arthritis (JIA). Hp can occur in blood as two isoforms (Hp1 and Hp2) in precursor and mature forms. Routine clinical chemistry immunoturbidimetry does not discern these forms. It is unknown how different forms relate to disease activity in JIA. Our aims were to determine allele frequency and plasma concentrations of different Hp forms at higher versus lower JIA disease activity and compare to other APPs.MethodsPlasma from JIA (n = 77) and healthy (n = 42) children were analyzed for apparent Hp allelic frequency and densitometric concentrations of alpha forms by Western blot (WB). Polymerase chain reaction (PCR) (buffy coat) was performed in a subset to estimate conformity with genetics. At higher versus lower juvenile arthritis disease activity score (JADAS27) (which includes erythrocyte sedimentation rate (ESR)), total mature Hp concentration from WB was compared and correlated against immunoturbidimetry and total protein, albumin, serum amyloid A (SAA) and C-reactive protein (CRP).ResultsAt 300-fold dilution needed to study mature forms in Western blot, precursors were undetectable. Hp2 contributed most signal in most samples. Hp allele frequency was similar in JIA and controls. Both mature forms, taken separately or by sum, declined following treatment, but remained above concentrations of healthy controls, even in a remission subset that achieved JADAS27 < 1. Densitometry correlated with immunoturbidimetry. Hp concentrations correlated with JADAS27, albumin (negatively), CRP and SAA with immunoturbidimetric method correlating strongest to JADAS27 (Spearman R ~ 0.6, p < 0.0001).ConclusionHp allele frequency in JIA is similar to the general population, indicating that children with JIA should have the same possibility as in healthy children to produce preHp2 (zonulin), thought to increase intestinal permeability. Circulating Hp concentrations largely parallel other APPs and ESR; none of these measures correlate very strongly to JADAS27 score but Hp can be measured from capillary sampling which is impossible with ESR.
Project description:Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease. The development of associated uveitis represents a significant risk for serious complications, including permanent loss of vision. Initiation of early treatment is important for controlling JIA-uveitis, but the disease can appear asymptomatically, making frequent screening procedures necessary for patients at risk. As our understanding of pathogenic drivers is currently incomplete, it is difficult to assess which JIA patients are at risk of developing uveitis. Identification of specific risk factors for JIA-associated uveitis is an important field of research, and in this review, we highlight the genomic, transcriptomic, and proteomic factors identified as potential uveitis risk factors in JIA, and discuss therapeutic strategies.
Project description:IntroductionJuvenile idiopathic arthritis (JIA) is an umbrella term for all chronic childhood arthropathies and can be divided into seven subtypes. It includes the enthesitis related arthritis (ERA) subtype which displays symptoms similar to ankylosing spondylitis (AS) and juvenile-onset psoriatic arthritis which has similarities to psoriatic arthritis (PsA) and psoriasis (Ps). We, therefore, hypothesized that two well-established susceptibility loci for AS and Ps, ERAP1 and IL23R, could also confer susceptibility to these JIA subtypes.MethodsSingle nucleotide polymorphisms (SNPs) in ERAP1 (rs30187) and IL23R (rs11209026) were genotyped in JIA cases (n = 1,054) and healthy controls (n = 5,200). Genotype frequencies were compared between all JIA cases and controls using the Cochrane-Armitage trend test implemented in PLINK. Stratified analysis by ILAR subtype was performed.ResultsThe ERA subtype showed strong association with ERAP1 SNP (P trend = 0.005). The IL23R SNP showed significant association in the PsA subtype (P trend = 0.04). The SNPs were not associated with JIA overall or with any other subtype.ConclusionsWe present evidence for subtype specific association of the ERAP1 gene with ERA JIA and the IL23R gene with juvenile-onset PsA. The findings will require validation in independent JIA datasets. These results suggest distinct pathogenic pathways in these subtypes.
Project description:Juvenile psoriatic arthritis (JPsA) is a relatively rare condition in childhood as it represents approximately 5% of the whole Juvenile Idiopathic Arthritis (JIA) population. According to International League of Associations of Rheumatology (ILAR) classification, JPsA is defined by the association of arthritis and psoriasis or, in the absence of typical psoriatic lesions, with at least two of the following: dactylitis, nail pitting, onycholysis or family history of psoriasis in a first-degree relative. However, recent studies have shown that this classification system could conceal more homogeneous subgroups of patients differing by age of onset, clinical characteristics and prognosis. Little is known about genetic factors and pathogenetic mechanisms which distinguish JPsA from other JIA subtypes or from isolated psoriasis without joint involvement, especially in the pediatric population. Specific clinical trials testing the efficacy of biological agents are lacking for JPsA, while in recent years novel therapeutic agents are emerging in adults. In this review, we summarize the clinical features and the current evidence on pathogenesis and therapeutic options for JPsA in order to provide a comprehensive overview on the clinical management of this complex and overlapping entity in childhood.
Project description:BackgroundRheumatoid arthritis and juvenile idiopathic arthritis are two types of autoimmune diseases with inflammation at the joints, occurring to adults and children respectively. There are phenotypic overlaps between these two types of diseases, despite the age difference in patient groups.MethodsTo systematically compare the genetic architecture of them, we conducted analyses at gene and pathway levels and constructed protein-protein-interaction network based on summary statistics of genome-wide association studies of these two diseases. We examined their difference and similarity at each level.ResultsWe observed extensive overlap in significant SNPs and genes at the human leukocyte antigen region. In addition, several SNPs in other regions of the human genome were also significantly associated with both diseases. We found significantly associated genes enriched in 32 pathways shared by both diseases. Excluding genes in the human leukocyte antigen region, significant enrichment is present for pathways like interleukin-27 pathway and NO2-dependent interleukin-12 pathway in natural killer cells.DiscussionThe identification of commonly associated genes and pathways may help in finding population at risk for both diseases, as well as shed light on repositioning and designing drugs for both diseases.
Project description:Systemic-onset juvenile idiopathic arthritis (soJIA) is a rheumatic disease in childhood characterized by systemic symptoms and a relatively poor prognosis. The peripheral leukocytes are thought to play the pathological role of soJIA although the exact cause is still obscure. In this study, we aimed to clarify the cellular functional abnormality in those cells. Here, we analyzed the gene expression profile in peripheral leukocytes from 51 patients with soJIA, 6 patients with poly-articular type JIA (polyJIA) and 8 healthy children utilizing DNA microarrays. A total of 3,491 genes, including genes related to immune reponse and metabolism, were differentially expressed in patients with soJIA compared to healthy individuals. The result provides insight into the pathogenesis of soJIA. Keywords: disease state analysis
Project description:Identify biomarkers to predict response to therapy in polyarticular juvenile idiopathic arthritis (JIA) using gene expression microarrays.
Project description:ObjectivesJuvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA.MethodsWe performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes.ResultsThe major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes.ConclusionsThe lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways.