Unknown

Dataset Information

0

The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management.


ABSTRACT:

Background

Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populations to Bti, taking into account their background in terms of larvicide exposure, status of temephos resistance and the level of activity of detoxifying enzymes involved in metabolic resistance to insecticides.

Methods

Population samples were established under insectarium conditions. Larval susceptibility to temephos and Bti was evaluated through bioassays and lethal concentrations of these compounds were determined. Biochemical assays were performed to determine the specific activity of five detoxifying enzymes in these samples.

Results

Fourteen populations were characterized and, except for one case, all displayed resistance to temephos. Most populations were classified as highly resistant. The populations also showed increased activity of one or more detoxifying enzymes (glutathione-S-transferases, esterases and mixed function oxidases), regardless of their temephos resistance status. All populations analyzed were susceptible to Bti, and the lethal concentrations were similar to those detected in two laboratory susceptible colonies. The response to Bti showed little variation. A maximum resistance ratio of 2.1 was observed in two untreated populations, while in two Bti-treated populations, the maximum resistance ratio was 1.9. No positive correlation was found between temephos resistance, increased activity of detoxifying enzymes, and susceptibility to Bti.

Conclusions

Data from this study show that all populations were susceptible to Bti, including twelve untreated and two treated populations that had been exposed to this agent for more than ten years. The temephos resistance and increased activity of detoxifying enzymes observed in thirteen populations was not correlated with changes in susceptibility to Bti. Our data show a lack of cross-resistance between these two compounds; thus, Bti can be used in an integrated control program to fight Ae. aegypti and counteract the temephos resistance that was found among all populations analyzed.

SUBMITTER: Araujo AP 

PROVIDER: S-EPMC3852962 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management.

Araújo Ana Paula AP   Araujo Diniz Diego Felipe DF   Helvecio Elisama E   de Barros Rosineide Arruda RA   de Oliveira Cláudia Maria Fontes CM   Ayres Constância Flávia Junqueira CF   de Melo-Santos Maria Alice Varjal MA   Regis Lêda Narcisa LN   Silva-Filha Maria Helena Neves Lobo MH  

Parasites & vectors 20131013 1


<h4>Background</h4>Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populatio  ...[more]

Similar Datasets

| S-EPMC5834902 | biostudies-literature
| S-EPMC7286513 | biostudies-literature
| S-EPMC3702384 | biostudies-literature
| S-EPMC8317411 | biostudies-literature
| S-EPMC6311009 | biostudies-literature
| S-EPMC5354417 | biostudies-literature
| S-EPMC10229604 | biostudies-literature
| S-EPMC2753073 | biostudies-literature
| S-EPMC9912598 | biostudies-literature
| S-EPMC4932163 | biostudies-literature