Unknown

Dataset Information

0

Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy.


ABSTRACT: We report here a facile thermal decomposition approach to creating tungsten oxide nanorods (WO2.9 NRs) with a length of 13.1 ± 3.6 nm and a diameter of 4.4 ± 1.5 nm for tumor theranostic applications. The formed WO2.9 NRs were modified with methoxypoly(ethylene glycol) (PEG) carboxyl acid via ligand exchange to have good water dispersability and biocompatibility. With the high photothermal conversion efficiency irradiated by a 980 nm laser and the better X-ray attenuation property than clinically used computed tomography (CT) contrast agent Iohexol, the formed PEGylated WO2.9 NRs are able to inhibit the growth of the model cancer cells in vitro and the corresponding tumor model in vivo, and enable effective CT imaging of the tumor model in vivo. Our "killing two birds with one stone" strategy could be extended for fabricating other nanoplatforms for efficient tumor theranostic applications.

SUBMITTER: Zhou Z 

PROVIDER: S-EPMC3888983 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy.

Zhou Zhiguo Z   Kong Bin B   Yu Chao C   Shi Xiangyang X   Wang Mingwei M   Liu Wei W   Sun Yanan Y   Zhang Yingjian Y   Yang Hong H   Yang Shiping S  

Scientific reports 20140113


We report here a facile thermal decomposition approach to creating tungsten oxide nanorods (WO2.9 NRs) with a length of 13.1 ± 3.6 nm and a diameter of 4.4 ± 1.5 nm for tumor theranostic applications. The formed WO2.9 NRs were modified with methoxypoly(ethylene glycol) (PEG) carboxyl acid via ligand exchange to have good water dispersability and biocompatibility. With the high photothermal conversion efficiency irradiated by a 980 nm laser and the better X-ray attenuation property than clinicall  ...[more]

Similar Datasets

| S-EPMC9083082 | biostudies-literature
| S-EPMC5995888 | biostudies-literature
| S-EPMC6592168 | biostudies-literature
| S-EPMC6276300 | biostudies-literature
| S-EPMC7717952 | biostudies-literature
| S-EPMC10888739 | biostudies-literature
| S-EPMC10856627 | biostudies-literature
2023-12-01 | GSE191172 | GEO
| S-EPMC7770883 | biostudies-literature
| S-EPMC6466791 | biostudies-literature