Project description:Hydrosilyl ethers, generated in situ by the dehydrogenative silylation of cyclopropylmethanols with diethylsilane, undergo asymmetric, intramolecular silylation of cyclopropyl C-H bonds in high yields and with high enantiomeric excesses in the presence of a rhodium catalyst derived from a rhodium precursor and the bisphosphine (S)-DTBM-SEGPHOS. The resulting enantioenriched oxasilolanes are suitable substrates for the Tamao-Fleming oxidation to form cyclopropanols with conservation of the ee value from the C-H silylation. Preliminary mechanistic data suggest that C-H cleavage is likely to be the turnover-limiting and enantioselectivity-determining step.
Project description:To develop new efficient stereoselective catalysts for Biginelli-like reactions, a chiral phosphoric acid bearing two hydroxy groups derived from ʟ-tartaric acid was successfully synthesized via highly regioselective transformations of enantiopure 1,1,4,4-tetraphenylbutanetetraol. The obtained catalyst effectively catalyzed Biginelli-like reactions with moderate to good enantioselectivities. Control experiments indicated that the presence of the two hydroxy groups were indispensable for achieving a high enantioselectivity.
Project description:We report a Rh-catalyzed enantioselective cycloisomerization of α,ω-heptadienes to afford cyclohexenes bearing quaternary carbon centers. Rhodium(I) and a new SDP ligand promote chemoselective formation of a cyclohex-3-enecarbaldehyde motif that is inaccessible by the Diels-Alder cycloaddition. Various α,α-bisallylaldehydes rearrange to generate six-membered rings by a mechanism triggered by aldehyde C-H bond activation. Mechanistic studies suggest a pathway involving regioselective carbometalation and endocyclic β-hydride elimination.
Project description:The widespread use of phosphine ligand libraries is frequently hampered by the challenges associated with their modular preparation. Here, we report a protocol that appends arenes to arylphosphines to access a series of biaryl monophosphines via rhodium-catalyzed P(III)-directed ortho C-H activation, enabling unprecedented one-fold, two-fold, and three-fold direct arylation. Our experimental and theoretical findings reveal a mechanism involving oxidative addition of aryl bromides to the Rh catalyst, further ortho C-H metalation via a four-membered cyclometalated ring. Given the ready availability of substrates, our approach opens the door to developing more general methods for the construction of phosphine ligands.
Project description:We have developed two different types of tandem reactions for the synthesis of highly functionalized cyclohexenones from cyclopropyl substituted propargyl esters. Both reactions were initiated by rhodium-catalyzed Saucy-Marbet 1,3-acyloxy migration. The resulting cyclopropyl substituted allenes derived from acyloxy migration then underwent [5 + 1] cycloaddition with CO. The acyloxy group not only eased the access to allene intermediates but also provided a handle for further selective functionalizations.
Project description:The reductive carbonylation of aryl iodides to aryl aldehydes possesses broad application prospects. We present an efficient and facile Rh-based catalytic system composed of the commercially available Rh salt RhCl3·3H2O, PPh3 as phosphine ligand, and Et3N as the base, for the synthesis of arylaldehydes via the reductive carbonylation of aryl iodides with CO and H2 under relatively mild conditions with a broad substrate range affording the products in good to excellent yields. Systematic investigations were carried out to study the experimental parameters. We explored the optimal ratio of Rh salt and PPh3 ligand, substrate scope, carbonyl source and hydrogen source, and the reaction mechanism. Particularly, a scaled-up experiment indicated that the catalytic method could find valuable applications in industrial productions. The low gas pressure, cheap ligand and low metal dosage could significantly improve the practicability in both chemical researches and industrial applications.
Project description:A novel and efficient rearrangement of N-tosylhydrazones bearing allyl ethers into trans-olefin-substituted sulfonylhydrazones is proposed. The reaction involves breakage of the C-O bond and formation of the C-N bond. The reaction can be extended to a wide range of substrates, and the target products can be synthesized smoothly, regardless of the presence of electron-donating and electron-withdrawing groups. The proposed strategy is a new direction in the field of rearrangement reactions.
Project description:Asymmetric 1,4-addition reactions with nitroalkenes are valuable because the resulting chiral nitro compounds can be converted into various useful species often used as chiral building blocks in drug and natural product synthesis. In the present work, asymmetric 1,4-addition reactions of arylboronic acids with nitroalkenes catalyzed by a rhodium complex with a chiral diene bearing a tertiary butyl amide moiety were developed. Just 0.1 mol% of the chiral rhodium complex could catalyze the reactions and give the desired products in high yields with excellent enantioselectivities. The homogeneous catalyst thus developed could be converted to a reusable heterogeneous metal nanoparticle system using the same chiral ligand as a modifier, which was immobilized using a polystyrene-derived polymer with cross-linking moieties, maintaining the same level of enantioselectivity. To our knowledge, this is the first example of asymmetric 1,4-addition reactions of arylboronic acids with nitroalkenes in a heterogeneous system. Wide substrate generality and high catalytic turnover were achieved in the presence of sufficient water without any additives such as KOH or KHF2 in both homogeneous and heterogeneous systems. Various insights relating to a rate-limiting step in the catalytic cycle, the importance of water, role of the secondary amide moiety in the ligand, and active species in the heterogeneous system were obtained through mechanistic studies.
Project description:Direct diazo transfer proceeds smoothly with alpha-aryl ketones. The derived alpha-aryl-alpha-diazo ketones cyclize efficiently with Rh catalysis to give the corresponding alpha-aryl cyclopentanones.
Project description:Several classes of enantioselective silylations of C-H bonds have been reported recently, but little mechanistic data on these processes are available. We report mechanistic studies on the rhodium-catalyzed, enantioselective silylation of aryl C-H bonds. A rhodium silyl dihydride and a rhodium norbornyl complex were prepared and determined to be interconverting catalyst resting states. Kinetic isotope effects indicated that the C-H bond cleavage step is not rate-determining, but the C-H bond cleavage and C-Si bond-forming steps together influence the enantioselectivity. DFT calculations indicate that the enantioselectivity originates from unfavorable steric interactions between the substrate and the ligand in the transition state leading to the formation of the minor enantiomer.