Unknown

Dataset Information

0

RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.


ABSTRACT: Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hematopoietic stem cells to be spared, and cancer-impaired immune cells to be repaired and activated. This study sought to advance development of LPC-targeted therapies by exploring nongenetic ways to slow the decay and to increase the immunogenicity of primary CD34(+) AML cells. CD34(+) AML cells generally displayed more colony-forming and aldehyde dehydrogenase activity than CD34(-) AML cells. Along with exposure to bone marrow stromal cells and low (1%-5%) oxygen, culture with RepSox (a reprogramming tool and inhibitor of transforming growth factor-β receptor 1) consistently slowed decline of CD34(+) AML and myelodysplastic syndrome (MDS) cells. RepSox-treated AML cells displayed higher CD34, CXCL12, and MYC mRNA levels than dimethyl sulfoxide-treated controls. RepSox also accelerated loss of T cell immunoglobulin mucin-3 (Tim-3), an immune checkpoint receptor that impairs antitumor immunity, from the surface of AML and MDS cells. Our results suggest RepSox may reduce Tim-3 expression by inhibiting transforming growth factor-β signaling and slow decay of CD34(+) AML cells by increasing CXCL12 and MYC, two factors that inhibit AML cell differentiation. By prolonging survival of CD34(+) AML cells and reducing Tim-3, RepSox may promote in vitro immune cell activation and advance development of LPC-targeted therapies.

SUBMITTER: Jajosky AN 

PROVIDER: S-EPMC4073822 | biostudies-literature | 2014 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.

Jajosky Audrey N AN   Coad James E JE   Vos Jeffrey A JA   Martin Karen H KH   Senft Jamie R JR   Wenger Sharon L SL   Gibson Laura F LF  

Stem cells translational medicine 20140522 7


Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hem  ...[more]

Similar Datasets

| S-EPMC3118333 | biostudies-literature
| S-EPMC3812523 | biostudies-literature
| S-EPMC11917077 | biostudies-literature
| S-EPMC9373712 | biostudies-literature
2018-02-19 | PXD008378 | Pride
| S-EPMC4319237 | biostudies-literature
| S-EPMC137521 | biostudies-literature
| S-EPMC4028871 | biostudies-literature
| S-EPMC7522655 | biostudies-literature
| S-EPMC8869405 | biostudies-literature